IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i8p4183-d532825.html
   My bibliography  Save this article

Microplastics in Glaciers: First Results from the Vatnajökull Ice Cap

Author

Listed:
  • Hlynur Stefánsson

    (Department of Engineering, Reykjavik University, 102 Reykjavik, Iceland)

  • Mark Peternell

    (Department of Earth Sciences, University of Gothenburg, 41320 Gothenburg, Sweden)

  • Matthias Konrad-Schmolke

    (Department of Earth Sciences, University of Gothenburg, 41320 Gothenburg, Sweden)

  • Hrafnhildur Hannesdóttir

    (Icelandic Meteorological Office, 105 Reykjavik, Iceland)

  • Einar Jón Ásbjörnsson

    (Department of Engineering, Reykjavik University, 102 Reykjavik, Iceland)

  • Erik Sturkell

    (Department of Earth Sciences, University of Gothenburg, 41320 Gothenburg, Sweden)

Abstract

Microplastic particles, as a second-phase material in ice, may contribute to the effect such particles have on the melting and rheological behaviour of glaciers, and thus influence the future meltwater contribution to the oceans and rising sea levels. Hence, it is of the utmost importance to map and understand the presence and dispersal of microplastics on a global scale. In this work, we identified microplastic particles in snow cores collected in a remote and pristine location on the Vatnajökull ice cap in Iceland. Utilising optical microscopy and µ-Raman spectroscopy, we visualised and identified microplastic particles of various sizes and materials. Our findings support that atmospheric transport of microplastic particles is one of the important pathways for microplastic pollution.

Suggested Citation

  • Hlynur Stefánsson & Mark Peternell & Matthias Konrad-Schmolke & Hrafnhildur Hannesdóttir & Einar Jón Ásbjörnsson & Erik Sturkell, 2021. "Microplastics in Glaciers: First Results from the Vatnajökull Ice Cap," Sustainability, MDPI, vol. 13(8), pages 1-11, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4183-:d:532825
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/8/4183/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/8/4183/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. N. Evangeliou & H. Grythe & Z. Klimont & C. Heyes & S. Eckhardt & S. Lopez-Aparicio & A. Stohl, 2020. "Atmospheric transport is a major pathway of microplastics to remote regions," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    2. Angelica Bianco & Monica Passananti, 2020. "Atmospheric Micro and Nanoplastics: An Enormous Microscopic Problem," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rakesh Kumar & Anurag Verma & Arkajyoti Shome & Rama Sinha & Srishti Sinha & Prakash Kumar Jha & Ritesh Kumar & Pawan Kumar & Shubham & Shreyas Das & Prabhakar Sharma & P. V. Vara Prasad, 2021. "Impacts of Plastic Pollution on Ecosystem Services, Sustainable Development Goals, and Need to Focus on Circular Economy and Policy Interventions," Sustainability, MDPI, vol. 13(17), pages 1-41, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Žaneta Stasiškienė & Jelena Barbir & Lina Draudvilienė & Zhi Kai Chong & Kerstin Kuchta & Viktoria Voronova & Walter Leal Filho, 2022. "Challenges and Strategies for Bio-Based and Biodegradable Plastic Waste Management in Europe," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    2. Andrew J Tanentzap & Samuel Cottingham & Jérémy Fonvielle & Isobel Riley & Lucy M Walker & Samuel G Woodman & Danai Kontou & Christian M Pichler & Erwin Reisner & Laurent Lebreton, 2021. "Microplastics and anthropogenic fibre concentrations in lakes reflect surrounding land use," PLOS Biology, Public Library of Science, vol. 19(9), pages 1-18, September.
    3. Daniela Thomas & Berit Schütze & Wiebke Mareile Heinze & Zacharias Steinmetz, 2020. "Sample Preparation Techniques for the Analysis of Microplastics in Soil—A Review," Sustainability, MDPI, vol. 12(21), pages 1-28, October.
    4. Angelica Bianco & Monica Passananti, 2020. "Atmospheric Micro and Nanoplastics: An Enormous Microscopic Problem," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
    5. Zexi Shen & Qiang Zhang & Vijay P. Singh & Yadu Pokhrel & Jianping Li & Chong-Yu Xu & Wenhuan Wu, 2022. "Drying in the low-latitude Atlantic Ocean contributed to terrestrial water storage depletion across Eurasia," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Brian Charles Barr & Hrund Ólöf Andradóttir & Throstur Thorsteinsson & Sigurður Erlingsson, 2021. "Mitigation of Suspendable Road Dust in a Subpolar, Oceanic Climate," Sustainability, MDPI, vol. 13(17), pages 1-16, August.
    7. Isabel Goßmann & Dorte Herzke & Andreas Held & Janina Schulz & Vladimir Nikiforov & Christoph Georgi & Nikolaos Evangeliou & Sabine Eckhardt & Gunnar Gerdts & Oliver Wurl & Barbara M. Scholz-Böttcher, 2023. "Occurrence and backtracking of microplastic mass loads including tire wear particles in northern Atlantic air," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Yu-Rong Liu & Marcel G. A. Heijden & Judith Riedo & Carlos Sanz-Lazaro & David J. Eldridge & Felipe Bastida & Eduardo Moreno-Jiménez & Xin-Quan Zhou & Hang-Wei Hu & Ji-Zheng He & José L. Moreno & Seba, 2023. "Soil contamination in nearby natural areas mirrors that in urban greenspaces worldwide," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Yanjun Meng & Kun Wang & Yuanyuan Lin, 2021. "The Role of Land Use Transition on Industrial Pollution Reduction in the Context of Innovation-Driven: The Case of 30 Provinces in China," Land, MDPI, vol. 10(4), pages 1-20, April.
    10. Binbin Chang & Lei Chen, 2021. "Land Economic Efficiency and Improvement of Environmental Pollution in the Process of Sustainable Urbanization: Case of Eastern China," Land, MDPI, vol. 10(8), pages 1-23, August.
    11. Jolanta Dąbrowska & Marcin Sobota & Małgorzata Świąder & Paweł Borowski & Andrzej Moryl & Radosław Stodolak & Ewa Kucharczak & Zofia Zięba & Jan K. Kazak, 2021. "Marine Waste—Sources, Fate, Risks, Challenges and Research Needs," IJERPH, MDPI, vol. 18(2), pages 1-17, January.
    12. Miner, Patrick & Smith, Barbara M. & Jani, Anant & McNeill, Geraldine & Gathorne-Hardy, Alfred, 2024. "Car harm: A global review of automobility's harm to people and the environment," Journal of Transport Geography, Elsevier, vol. 115(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4183-:d:532825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.