IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43695-0.html
   My bibliography  Save this article

Long-range atmospheric transport of microplastics across the southern hemisphere

Author

Listed:
  • Qiqing Chen

    (East China Normal University)

  • Guitao Shi

    (East China Normal University
    School of Geographic Sciences, East China Normal University)

  • Laura E. Revell

    (University of Canterbury)

  • Jun Zhang

    (New York University Shanghai
    New York University)

  • Chencheng Zuo

    (East China Normal University)

  • Danhe Wang

    (School of Geographic Sciences, East China Normal University)

  • Eric C. Le Ru

    (School of Chemical and Physical Sciences, Victoria University of Wellington)

  • Guangmei Wu

    (School of Geographic Sciences, East China Normal University)

  • Denise M. Mitrano

    (ETH Zurich)

Abstract

Airborne microplastics (MPs) can undergo long range transport to remote regions. Yet there is a large knowledge gap regarding the occurrence and burden of MPs in the marine boundary layer, which hampers comprehensive modelling of their global atmospheric transport. In particular, the transport efficiency of MPs with different sizes and morphologies remains uncertain. Here we show a hemispheric-scale analysis of airborne MPs along a cruise path from the mid-Northern Hemisphere to Antarctica. We present the inaugural measurements of MPs concentrations over the Southern Ocean and interior Antarctica and find that MPs fibers are transported more efficiently than MPs fragments along the transect, with the transport dynamics of MPs generally similar to those of non-plastic particles. Morphology is found to be the dominant factor influencing the hemispheric transport of MPs to remote Antarctic regions. This study underlines the importance of long-range atmospheric transport in MPs cycling dynamics in the environment.

Suggested Citation

  • Qiqing Chen & Guitao Shi & Laura E. Revell & Jun Zhang & Chencheng Zuo & Danhe Wang & Eric C. Le Ru & Guangmei Wu & Denise M. Mitrano, 2023. "Long-range atmospheric transport of microplastics across the southern hemisphere," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43695-0
    DOI: 10.1038/s41467-023-43695-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43695-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43695-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ilka Peeken & Sebastian Primpke & Birte Beyer & Julia Gütermann & Christian Katlein & Thomas Krumpen & Melanie Bergmann & Laura Hehemann & Gunnar Gerdts, 2018. "Arctic sea ice is an important temporal sink and means of transport for microplastic," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    2. Laura E. Revell & Peter Kuma & Eric C. Ru & Walter R. C. Somerville & Sally Gaw, 2021. "Direct radiative effects of airborne microplastics," Nature, Nature, vol. 598(7881), pages 462-467, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philip Brahana & Mingyi Zhang & Elias Nakouzi & Bhuvnesh Bharti, 2024. "Weathering influences the ice nucleation activity of microplastics," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claudia B. Pratesi & Maria Aparecida A. L. Santos Almeida & Geysa S. Cutrim Paz & Marcelo H. Ramos Teotonio & Lenora Gandolfi & Riccardo Pratesi & Mariana Hecht & Renata Puppin Zandonadi, 2021. "Presence and Quantification of Microplastic in Urban Tap Water: A Pre-Screening in Brasilia, Brazil," Sustainability, MDPI, vol. 13(11), pages 1-10, June.
    2. S. B. Cornish & H. L. Johnson & R. D. C. Mallett & J. Dörr & Y. Kostov & A. E. Richards, 2022. "Rise and fall of sea ice production in the Arctic Ocean’s ice factories," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Angelica Bianco & Monica Passananti, 2020. "Atmospheric Micro and Nanoplastics: An Enormous Microscopic Problem," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
    4. Maryna Strokal & Paul Vriend & Mirjam P. Bak & Carolien Kroeze & Jikke Wijnen & Tim Emmerik, 2023. "River export of macro- and microplastics to seas by sources worldwide," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Isabel Goßmann & Dorte Herzke & Andreas Held & Janina Schulz & Vladimir Nikiforov & Christoph Georgi & Nikolaos Evangeliou & Sabine Eckhardt & Gunnar Gerdts & Oliver Wurl & Barbara M. Scholz-Böttcher, 2023. "Occurrence and backtracking of microplastic mass loads including tire wear particles in northern Atlantic air," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Xianjin An & Wei Li & Jiacheng Lan & Muhammad Adnan, 2022. "Preliminary Study on the Distribution, Source, and Ecological Risk of Typical Microplastics in Karst Groundwater in Guizhou Province, China," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    7. Muhammad Ali & Husna Hayati Jarni & Adnan Aftab & Abdul Razak Ismail & Noori M. Cata Saady & Muhammad Faraz Sahito & Alireza Keshavarz & Stefan Iglauer & Mohammad Sarmadivaleh, 2020. "Nanomaterial-Based Drilling Fluids for Exploitation of Unconventional Reservoirs: A Review," Energies, MDPI, vol. 13(13), pages 1-30, July.
    8. Nada Mallah Boustani & Sana Abidib, 2023. "ESG Investing in “White Gold”: The Case of Lebanese Salinas," JRFM, MDPI, vol. 16(3), pages 1-20, February.
    9. Jianli Liu & Jianyao Liang & Jiannan Ding & Guangming Zhang & Xianyi Zeng & Qingbo Yang & Bo Zhu & Weidong Gao, 2021. "Microfiber pollution: an ongoing major environmental issue related to the sustainable development of textile and clothing industry," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11240-11256, August.
    10. Jun Meng & Jingfang Fan & Uma S. Bhatt & Jürgen Kurths, 2023. "Arctic weather variability and connectivity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43695-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.