IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-10632-z.html
   My bibliography  Save this article

Site-selectively generated photon emitters in monolayer MoS2 via local helium ion irradiation

Author

Listed:
  • J. Klein

    (Technische Universität München
    Nanosystems Initiative Munich (NIM))

  • M. Lorke

    (Universität Bremen
    University of Bremen)

  • M. Florian

    (Universität Bremen)

  • F. Sigger

    (Technische Universität München
    Nanosystems Initiative Munich (NIM))

  • L. Sigl

    (Technische Universität München)

  • S. Rey

    (Technische Universität München)

  • J. Wierzbowski

    (Technische Universität München)

  • J. Cerne

    (University at Buffalo, The State University of New York)

  • K. Müller

    (Technische Universität München)

  • E. Mitterreiter

    (Technische Universität München)

  • P. Zimmermann

    (Technische Universität München)

  • T. Taniguchi

    (National Institute for Materials Science)

  • K. Watanabe

    (National Institute for Materials Science)

  • U. Wurstbauer

    (Technische Universität München
    Nanosystems Initiative Munich (NIM))

  • M. Kaniber

    (Technische Universität München
    Nanosystems Initiative Munich (NIM))

  • M. Knap

    (Technical University of Munich)

  • R. Schmidt

    (Max-Planck-Institut für Quantenoptik)

  • J. J. Finley

    (Technische Universität München
    Nanosystems Initiative Munich (NIM))

  • A. W. Holleitner

    (Technische Universität München
    Nanosystems Initiative Munich (NIM))

Abstract

Quantum light sources in solid-state systems are of major interest as a basic ingredient for integrated quantum photonic technologies. The ability to tailor quantum emitters via site-selective defect engineering is essential for realizing scalable architectures. However, a major difficulty is that defects need to be controllably positioned within the material. Here, we overcome this challenge by controllably irradiating monolayer MoS2 using a sub-nm focused helium ion beam to deterministically create defects. Subsequent encapsulation of the ion exposed MoS2 flake with high-quality hBN reveals spectrally narrow emission lines that produce photons in the visible spectral range. Based on ab-initio calculations we interpret these emission lines as stemming from the recombination of highly localized electron–hole complexes at defect states generated by the local helium ion exposure. Our approach to deterministically write optically active defect states in a single transition metal dichalcogenide layer provides a platform for realizing exotic many-body systems, including coupled single-photon sources and interacting exciton lattices that may allow the exploration of Hubbard physics.

Suggested Citation

  • J. Klein & M. Lorke & M. Florian & F. Sigger & L. Sigl & S. Rey & J. Wierzbowski & J. Cerne & K. Müller & E. Mitterreiter & P. Zimmermann & T. Taniguchi & K. Watanabe & U. Wurstbauer & M. Kaniber & M., 2019. "Site-selectively generated photon emitters in monolayer MoS2 via local helium ion irradiation," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10632-z
    DOI: 10.1038/s41467-019-10632-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-10632-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-10632-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feifei Xiang & Lysander Huberich & Preston A. Vargas & Riccardo Torsi & Jonas Allerbeck & Anne Marie Z. Tan & Chengye Dong & Pascal Ruffieux & Roman Fasel & Oliver Gröning & Yu-Chuan Lin & Richard G. , 2024. "Charge state-dependent symmetry breaking of atomic defects in transition metal dichalcogenides," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. M. Iqbal Bakti Utama & Hongfei Zeng & Tumpa Sadhukhan & Anushka Dasgupta & S. Carin Gavin & Riddhi Ananth & Dmitry Lebedev & Wei Wang & Jia-Shiang Chen & Kenji Watanabe & Takashi Taniguchi & Tobin J. , 2023. "Chemomechanical modification of quantum emission in monolayer WSe2," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Yeonghun Lee & Yaoqiao Hu & Xiuyao Lang & Dongwook Kim & Kejun Li & Yuan Ping & Kai-Mei C. Fu & Kyeongjae Cho, 2022. "Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Huan Zhao & Michael T. Pettes & Yu Zheng & Han Htoon, 2021. "Site-controlled telecom-wavelength single-photon emitters in atomically-thin MoTe2," Nature Communications, Nature, vol. 12(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10632-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.