IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53864-4.html
   My bibliography  Save this article

High-throughput screening and machine learning classification of van der Waals dielectrics for 2D nanoelectronics

Author

Listed:
  • Yuhui Li

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Guolin Wan

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Yongqian Zhu

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Jingyu Yang

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Yan-Fang Zhang

    (Chinese Academy of Sciences)

  • Jinbo Pan

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Shixuan Du

    (Chinese Academy of Sciences
    Chinese Academy of Sciences
    Songshan Lake Materials Laboratory)

Abstract

Van der Waals (vdW) dielectrics are promising for enhancing the performance of nanoscale field-effect transistors (FETs) based on two-dimensional (2D) semiconductors due to their clean interfaces. Ideal vdW dielectrics for 2D FETs require high dielectric constants and proper band alignment with 2D semiconductors. However, high-quality dielectrics remain scarce. Here, we employed a topology-scale algorithm to screen vdW materials consisting of zero-dimensional (0D), one-dimensional (1D), and 2D motifs from Materials Project database. High-throughput first-principles calculations yielded bandgaps and dielectric properties of 189 0D, 81 1D and 252 2D vdW materials. Among which, 9 highly promising dielectric candidates are suitable for MoS2-based FETs. Element prevalence analysis indicates that materials containing strongly electronegative anions and heavy cations are more likely to be promising dielectrics. Moreover, we developed a high-accuracy two-step machine learning (ML) classifier for screening dielectrics. Implementing active learning framework, we successfully identified 49 additional promising vdW dielectrics. This work provides a rich candidate list of vdW dielectrics along with a high-accuracy ML screening model, facilitating future development of 2D FETs.

Suggested Citation

  • Yuhui Li & Guolin Wan & Yongqian Zhu & Jingyu Yang & Yan-Fang Zhang & Jinbo Pan & Shixuan Du, 2024. "High-throughput screening and machine learning classification of van der Waals dielectrics for 2D nanoelectronics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53864-4
    DOI: 10.1038/s41467-024-53864-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53864-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53864-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vinit Sharma & Chenchen Wang & Robert G. Lorenzini & Rui Ma & Qiang Zhu & Daniel W. Sinkovits & Ghanshyam Pilania & Artem R. Oganov & Sanat Kumar & Gregory A. Sotzing & Steven A. Boggs & Rampi Rampras, 2014. "Rational design of all organic polymer dielectrics," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
    2. Hiroshi Kageyama & Katsuro Hayashi & Kazuhiko Maeda & J. Paul Attfield & Zenji Hiroi & James M. Rondinelli & Kenneth R. Poeppelmeier, 2018. "Expanding frontiers in materials chemistry and physics with multiple anions," Nature Communications, Nature, vol. 9(1), pages 1-15, December.
    3. Shuxia Tao & Ines Schmidt & Geert Brocks & Junke Jiang & Ionut Tranca & Klaus Meerholz & Selina Olthof, 2019. "Absolute energy level positions in tin- and lead-based halide perovskites," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    4. Zeya Li & Junwei Huang & Ling Zhou & Zian Xu & Feng Qin & Peng Chen & Xiaojun Sun & Gan Liu & Chengqi Sui & Caiyu Qiu & Yangfan Lu & Huiyang Gou & Xiaoxiang Xi & Toshiya Ideue & Peizhe Tang & Yoshihir, 2023. "An anisotropic van der Waals dielectric for symmetry engineering in functionalized heterointerfaces," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Yuan Liu & Yu Huang & Xiangfeng Duan, 2019. "Van der Waals integration before and beyond two-dimensional materials," Nature, Nature, vol. 567(7748), pages 323-333, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lutao Li & Junjie Yao & Juntong Zhu & Yuan Chen & Chen Wang & Zhicheng Zhou & Guoxiang Zhao & Sihan Zhang & Ruonan Wang & Jiating Li & Xiangyi Wang & Zheng Lu & Lingbo Xiao & Qiang Zhang & Guifu Zou, 2023. "Colloid driven low supersaturation crystallization for atomically thin Bismuth halide perovskite," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Junzhi Ye & Navendu Mondal & Ben P. Carwithen & Yunwei Zhang & Linjie Dai & Xiang-Bing Fan & Jian Mao & Zhiqiang Cui & Pratyush Ghosh & Clara Otero‐Martínez & Lars Turnhout & Yi-Teng Huang & Zhongzhen, 2024. "Extending the defect tolerance of halide perovskite nanocrystals to hot carrier cooling dynamics," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Rishi Gurnani & Stuti Shukla & Deepak Kamal & Chao Wu & Jing Hao & Christopher Kuenneth & Pritish Aklujkar & Ashish Khomane & Robert Daniels & Ajinkya A. Deshmukh & Yang Cao & Gregory Sotzing & Rampi , 2024. "AI-assisted discovery of high-temperature dielectrics for energy storage," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Guojing Hu & Changlong Wang & Shasha Wang & Ying Zhang & Yan Feng & Zhi Wang & Qian Niu & Zhenyu Zhang & Bin Xiang, 2023. "Long-range skin Josephson supercurrent across a van der Waals ferromagnet," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    5. Tianpeng Li & Bin Li & Yingguo Yang & Zuoming Jin & Zhiguo Zhang & Peilin Wang & Liangliang Deng & Yiqiang Zhan & Qinghong Zhang & Jia Liang, 2024. "Metal chalcogenide electron extraction layers for nip-type tin-based perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Pei-Yu Huang & Bi-Yi Jiang & Hong-Ji Chen & Jia-Yi Xu & Kang Wang & Cheng-Yi Zhu & Xin-Yan Hu & Dong Li & Liang Zhen & Fei-Chi Zhou & Jing-Kai Qin & Cheng-Yan Xu, 2023. "Neuro-inspired optical sensor array for high-accuracy static image recognition and dynamic trace extraction," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. You Meng & Xiaocui Li & Xiaolin Kang & Wanpeng Li & Wei Wang & Zhengxun Lai & Weijun Wang & Quan Quan & Xiuming Bu & SenPo Yip & Pengshan Xie & Dong Chen & Dengji Li & Fei Wang & Chi-Fung Yeung & Chan, 2023. "Van der Waals nanomesh electronics on arbitrary surfaces," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Alex M. Ganose & David O. Scanlon & Aron Walsh & Robert L. Z. Hoye, 2022. "The defect challenge of wide-bandgap semiconductors for photovoltaics and beyond," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    9. Zehua Hu & Tanjung Krisnanda & Antonio Fieramosca & Jiaxin Zhao & Qianlu Sun & Yuzhong Chen & Haiyun Liu & Yuan Luo & Rui Su & Junyong Wang & Kenji Watanabe & Takashi Taniguchi & Goki Eda & Xiao Rensh, 2024. "Energy transfer driven brightening of MoS2 by ultrafast polariton relaxation in microcavity MoS2/hBN/WS2 heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Yizhen Lu & Bixuan Li & Na Xu & Zhihua Zhou & Yu Xiao & Yu Jiang & Teng Li & Sheng Hu & Yongji Gong & Yang Cao, 2023. "One-atom-thick hexagonal boron nitride co-catalyst for enhanced oxygen evolution reactions," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    11. Lingxin Luo & Lingxiang Hou & Xueping Cui & Pengxin Zhan & Ping He & Chuying Dai & Ruian Li & Jichen Dong & Ye Zou & Guoming Liu & Yanpeng Liu & Jian Zheng, 2024. "Self-condensation-assisted chemical vapour deposition growth of atomically two-dimensional MOF single-crystals," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Lei Xu & Junling Liu & Xinrui Guo & Shuo Liu & Xilin Lai & Jingyue Wang & Mengshi Yu & Zhengdao Xie & Hailin Peng & Xuming Zou & Xinran Wang & Ru Huang & Ming He, 2024. "Ultrasensitive dim-light neuromorphic vision sensing via momentum-conserved reconfigurable van der Waals heterostructure," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Georgy A. Ermolaev & Kirill V. Voronin & Adilet N. Toksumakov & Dmitriy V. Grudinin & Ilia M. Fradkin & Arslan Mazitov & Aleksandr S. Slavich & Mikhail K. Tatmyshevskiy & Dmitry I. Yakubovsky & Valent, 2024. "Wandering principal optical axes in van der Waals triclinic materials," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. Shuangzan Lu & Deping Guo & Zhengbo Cheng & Yanping Guo & Cong Wang & Jinghao Deng & Yusong Bai & Cheng Tian & Linwei Zhou & Youguo Shi & Jun He & Wei Ji & Chendong Zhang, 2023. "Controllable dimensionality conversion between 1D and 2D CrCl3 magnetic nanostructures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    15. Jun Yu & Han Wang & Fuwei Zhuge & Zirui Chen & Man Hu & Xiang Xu & Yuhui He & Ying Ma & Xiangshui Miao & Tianyou Zhai, 2023. "Simultaneously ultrafast and robust two-dimensional flash memory devices based on phase-engineered edge contacts," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Shunsuke Sasaki & Souvik Giri & Simon J. Cassidy & Sunita Dey & Maria Batuk & Daphne Vandemeulebroucke & Giannantonio Cibin & Ronald I. Smith & Philip Holdship & Clare P. Grey & Joke Hadermann & Simon, 2023. "Anion redox as a means to derive layered manganese oxychalcogenides with exotic intergrowth structures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Amin Alibakhshi & Lars V. Schäfer, 2024. "Electron iso-density surfaces provide a thermodynamically consistent representation of atomic and molecular surfaces," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    18. Sangyong Park & Dongyoung Lee & Juncheol Kang & Hojin Choi & Jin-Hong Park, 2023. "Laterally gated ferroelectric field effect transistor (LG-FeFET) using α-In2Se3 for stacked in-memory computing array," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Pietro Caprioglio & Joel A. Smith & Robert D. J. Oliver & Akash Dasgupta & Saqlain Choudhary & Michael D. Farrar & Alexandra J. Ramadan & Yen-Hung Lin & M. Greyson Christoforo & James M. Ball & Jonas , 2023. "Open-circuit and short-circuit loss management in wide-gap perovskite p-i-n solar cells," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Peiliu Li & Xianfu Huang & Ya-Pu Zhao, 2023. "Electro-capillary peeling of thin films," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53864-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.