IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-10468-7.html
   My bibliography  Save this article

Absolute energy level positions in tin- and lead-based halide perovskites

Author

Listed:
  • Shuxia Tao

    (Eindhoven University of Technology)

  • Ines Schmidt

    (University of Cologne)

  • Geert Brocks

    (Eindhoven University of Technology
    Computational Materials Science, Faculty of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente)

  • Junke Jiang

    (Eindhoven University of Technology)

  • Ionut Tranca

    (Eindhoven University of Technology)

  • Klaus Meerholz

    (University of Cologne)

  • Selina Olthof

    (University of Cologne)

Abstract

Metal halide perovskites are promising materials for future optoelectronic applications. One intriguing property, important for many applications, is the tunability of the band gap via compositional engineering. While experimental reports on changes in absorption or photoluminescence show rather good agreement for different compounds, the physical origins of these changes, namely the variations in valence and conduction band positions, are not well characterized. Here, we determine ionization energy and electron affinity values of all primary tin- and lead-based perovskites using photoelectron spectroscopy data, supported by first-principles calculations and a tight-binding analysis. We demonstrate energy level variations are primarily determined by the relative positions of the atomic energy levels of metal cations and halide anions and secondarily influenced by the cation-anion interaction strength. These results mark a significant step towards understanding the electronic structure of this material class and provides the basis for rational design rules regarding the energetics in perovskite optoelectronics.

Suggested Citation

  • Shuxia Tao & Ines Schmidt & Geert Brocks & Junke Jiang & Ionut Tranca & Klaus Meerholz & Selina Olthof, 2019. "Absolute energy level positions in tin- and lead-based halide perovskites," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10468-7
    DOI: 10.1038/s41467-019-10468-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-10468-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-10468-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alex M. Ganose & David O. Scanlon & Aron Walsh & Robert L. Z. Hoye, 2022. "The defect challenge of wide-bandgap semiconductors for photovoltaics and beyond," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    2. Junzhi Ye & Navendu Mondal & Ben P. Carwithen & Yunwei Zhang & Linjie Dai & Xiang-Bing Fan & Jian Mao & Zhiqiang Cui & Pratyush Ghosh & Clara Otero‐Martínez & Lars Turnhout & Yi-Teng Huang & Zhongzhen, 2024. "Extending the defect tolerance of halide perovskite nanocrystals to hot carrier cooling dynamics," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Pietro Caprioglio & Joel A. Smith & Robert D. J. Oliver & Akash Dasgupta & Saqlain Choudhary & Michael D. Farrar & Alexandra J. Ramadan & Yen-Hung Lin & M. Greyson Christoforo & James M. Ball & Jonas , 2023. "Open-circuit and short-circuit loss management in wide-gap perovskite p-i-n solar cells," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Gabriel J. Man & Chinnathambi Kamal & Aleksandr Kalinko & Dibya Phuyal & Joydev Acharya & Soham Mukherjee & Pabitra K. Nayak & Håkan Rensmo & Michael Odelius & Sergei M. Butorin, 2022. "A-site cation influence on the conduction band of lead bromide perovskites," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Tianpeng Li & Bin Li & Yingguo Yang & Zuoming Jin & Zhiguo Zhang & Peilin Wang & Liangliang Deng & Yiqiang Zhan & Qinghong Zhang & Jia Liang, 2024. "Metal chalcogenide electron extraction layers for nip-type tin-based perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Lei Xu & Junling Liu & Xinrui Guo & Shuo Liu & Xilin Lai & Jingyue Wang & Mengshi Yu & Zhengdao Xie & Hailin Peng & Xuming Zou & Xinran Wang & Ru Huang & Ming He, 2024. "Ultrasensitive dim-light neuromorphic vision sensing via momentum-conserved reconfigurable van der Waals heterostructure," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Yuhui Li & Guolin Wan & Yongqian Zhu & Jingyu Yang & Yan-Fang Zhang & Jinbo Pan & Shixuan Du, 2024. "High-throughput screening and machine learning classification of van der Waals dielectrics for 2D nanoelectronics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10468-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.