IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53786-1.html
   My bibliography  Save this article

Synthesis and structure of a non-van-der-Waals two-dimensional coordination polymer with superconductivity

Author

Listed:
  • Zhichao Pan

    (Peking University
    Peking University)

  • Xing Huang

    (Technische Universität Dresden)

  • Yunlong Fan

    (Peking University
    Peking University)

  • Shaoze Wang

    (Westlake University)

  • Yiyu Liu

    (China University of Petroleum)

  • Xuzhong Cong

    (Peking University)

  • Tingsong Zhang

    (Peking University
    Peking University)

  • Shichao Qi

    (Peking University)

  • Ying Xing

    (China University of Petroleum)

  • Yu-Qing Zheng

    (Peking University
    Peking University)

  • Jian Li

    (Nanjing University)

  • Xiaoming Zhang

    (Ocean University of China)

  • Wei Xu

    (Institute of Chemistry Chinese Academy of Sciences)

  • Lei Sun

    (Westlake University)

  • Jian Wang

    (Peking University
    Collaborative Innovation Center of Quantum Matter)

  • Jin-Hu Dou

    (Peking University
    Peking University)

Abstract

Two-dimensional conjugated coordination polymers exhibit remarkable charge transport properties, with copper-based benzenehexathiol (Cu-BHT) being a rare superconductor. However, the atomic structure of Cu-BHT has remained unresolved, hindering a deeper understanding of the superconductivity in such materials. Here, we show the synthesis of single crystals of Cu3BHT with high crystallinity, revealing a quasi-two-dimensional kagome structure with non-van der Waals interlayer Cu-S covalent bonds. These crystals exhibit intrinsic metallic behavior, with conductivity reaching 103 S/cm at 300 K and 104 S/cm at 2 K. Notably, superconductivity in Cu3BHT crystals is observed at 0.25 K, attributed to enhanced electron-electron interactions and electron-phonon coupling in the non-van der Waals structure. The discovery of this clear correlation between atomic-level crystal structure and electrical properties provides a crucial foundation for advancing superconductor coordination polymers, with potential to revolutionize future quantum devices.

Suggested Citation

  • Zhichao Pan & Xing Huang & Yunlong Fan & Shaoze Wang & Yiyu Liu & Xuzhong Cong & Tingsong Zhang & Shichao Qi & Ying Xing & Yu-Qing Zheng & Jian Li & Xiaoming Zhang & Wei Xu & Lei Sun & Jian Wang & Jin, 2024. "Synthesis and structure of a non-van-der-Waals two-dimensional coordination polymer with superconductivity," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53786-1
    DOI: 10.1038/s41467-024-53786-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53786-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53786-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xing Huang & Peng Sheng & Zeyi Tu & Fengjiao Zhang & Junhua Wang & Hua Geng & Ye Zou & Chong-an Di & Yuanping Yi & Yimeng Sun & Wei Xu & Daoben Zhu, 2015. "A two-dimensional π–d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    2. Dawei Feng & Ting Lei & Maria R. Lukatskaya & Jihye Park & Zhehao Huang & Minah Lee & Leo Shaw & Shucheng Chen & Andrey A. Yakovenko & Ambarish Kulkarni & Jianping Xiao & Kurt Fredrickson & Jeffrey B., 2018. "Robust and conductive two-dimensional metal−organic frameworks with exceptionally high volumetric and areal capacitance," Nature Energy, Nature, vol. 3(1), pages 30-36, January.
    3. Hailian Li & Mohamed Eddaoudi & M. O'Keeffe & O. M. Yaghi, 1999. "Design and synthesis of an exceptionally stable and highly porous metal-organic framework," Nature, Nature, vol. 402(6759), pages 276-279, November.
    4. Z.F Wang & Zheng Liu & Feng Liu, 2013. "Organic topological insulators in organometallic lattices," Nature Communications, Nature, vol. 4(1), pages 1-5, June.
    5. Elise M. Miner & Tomohiro Fukushima & Dennis Sheberla & Lei Sun & Yogesh Surendranath & Mircea Dincă, 2016. "Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2," Nature Communications, Nature, vol. 7(1), pages 1-7, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Lirong & Jung, Han Sol & Lee, Jae Won & Kang, Yong Tae, 2022. "Review on applications of metal–organic frameworks for CO2 capture and the performance enhancement mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Choudhary, Ram Bilash & Ansari, Sarfaraz & Majumder, Mandira, 2021. "Recent advances on redox active composites of metal-organic framework and conducting polymers as pseudocapacitor electrode material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Yun Fan & Yu Shen & Jia Zhang & Xinglong Zhang & Zeqi Zhang & Hongfeng Li & Yong Peng & Jiena Weng & Ruijie Xie & Wenlei Zhang & Yu Han & Yawen Xiao & Suoying Zhang & Bing Zheng & Hao-Li Zhang & Sheng, 2024. "Wedging crystals to fabricate crystalline framework nanosheets via mechanochemistry," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Tianyi Hu & Weiliang Zhong & Tingfeng Zhang & Weihua Wang & Z. F. Wang, 2023. "Identifying topological corner states in two-dimensional metal-organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Qingju Wang & Jianbo Hu & Lifeng Yang & Zhaoqiang Zhang & Tian Ke & Xili Cui & Huabin Xing, 2022. "One-step removal of alkynes and propadiene from cracking gases using a multi-functional molecular separator," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Sihua Feng & Hengli Duan & Hao Tan & Fengchun Hu & Chaocheng Liu & Yao Wang & Zhi Li & Liang Cai & Yuyang Cao & Chao Wang & Zeming Qi & Li Song & Xuguang Liu & Zhihu Sun & Wensheng Yan, 2023. "Intrinsic room-temperature ferromagnetism in a two-dimensional semiconducting metal-organic framework," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Xin Zhang & Xiaoyin Li & Zhengwang Cheng & Aixi Chen & Pengdong Wang & Xingyue Wang & Xiaoxu Lei & Qi Bian & Shaojian Li & Bingkai Yuan & Jianzhi Gao & Fang-Sen Li & Minghu Pan & Feng Liu, 2024. "Large-scale 2D heterostructures from hydrogen-bonded organic frameworks and graphene with distinct Dirac and flat bands," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Chuanhui Huang & Xinglong Shang & Xinyuan Zhou & Zhe Zhang & Xing Huang & Yang Lu & Mingchao Wang & Markus Löffler & Zhongquan Liao & Haoyuan Qi & Ute Kaiser & Dana Schwarz & Andreas Fery & Tie Wang &, 2023. "Hierarchical conductive metal-organic framework films enabling efficient interfacial mass transfer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Xinhe Ye & Lai-Hon Chung & Kedi Li & Saili Zheng & Yan-Lung Wong & Zihao Feng & Yonghe He & Dandan Chu & Zhengtao Xu & Lin Yu & Jun He, 2022. "Organic radicals stabilization above 300 °C in Eu-based coordination polymers for solar steam generation," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Tingting Lian & Li Xu & Diana Piankova & Jin-Lin Yang & Nadezda V. Tarakina & Yang Wang & Markus Antonietti, 2024. "Metal-organic framework derived crystalline nanocarbon for Fenton-like reaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Manav Chauhan & Bharti Rana & Poorvi Gupta & Rahul Kalita & Chhaya Thadhani & Kuntal Manna, 2024. "Tailored pore-confined single-site iron(III) catalyst for selective CH4 oxidation to CH3OH or CH3CO2H using O2," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Usman, Muhammad R., 2022. "Hydrogen storage methods: Review and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    13. Lingxin Luo & Lingxiang Hou & Xueping Cui & Pengxin Zhan & Ping He & Chuying Dai & Ruian Li & Jichen Dong & Ye Zou & Guoming Liu & Yanpeng Liu & Jian Zheng, 2024. "Self-condensation-assisted chemical vapour deposition growth of atomically two-dimensional MOF single-crystals," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. Xueqiao Mei & Han Yuan & Chunhu Li, 2023. "Study on the MOF Frame Pt-TiO 2 Hybrid Photocatalyst and Its Photocatalytic Performance," Sustainability, MDPI, vol. 15(2), pages 1-14, January.
    15. Ahmed Hussain Jawhari, 2022. "Novel Nanomaterials for Hydrogen Production and Storage: Evaluating the Futurity of Graphene/Graphene Composites in Hydrogen Energy," Energies, MDPI, vol. 15(23), pages 1-16, November.
    16. Simon N. Deger & Sebastian J. Weishäupl & Alexander Pöthig & Roland A. Fischer, 2022. "A Perylenediimide-Based Zinc-Coordination Polymer for Photosensitized Singlet-Oxygen Generation," Energies, MDPI, vol. 15(7), pages 1-12, March.
    17. Yigang Jin & Yuhui Fang & Ze Li & Xiang Hao & Feng He & Bo Guan & Dongwei Wang & Sha Wu & Yang Li & Caiming Liu & Xiaojuan Dai & Ye Zou & Yimeng Sun & Wei Xu, 2022. "Construction of conducting bimetallic organic metal chalcogenides via selective metal metathesis and oxidation transformation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Vasileios Ntouros & Ioannis Kousis & Anna Laura Pisello & Margarita Niki Assimakopoulos, 2022. "Binding Materials for MOF Monolith Shaping Processes: A Review towards Real Life Application," Energies, MDPI, vol. 15(4), pages 1-21, February.
    19. Lixia Wu & Yu Zhu & Jing Yuan & Xiaozhong Guo & Qianfeng Zhang, 2024. "Advances in Adsorption, Absorption, and Catalytic Materials for VOCs Generated in Typical Industries," Energies, MDPI, vol. 17(8), pages 1-30, April.
    20. Danxia Liu & Xiaolong Yang & Lin Zhang & Yiyan Tang & Huijun He & Meina Liang & Zhihong Tu & Hongxiang Zhu, 2022. "Immobilization of Biomass Materials for Removal of Refractory Organic Pollutants from Wastewater," IJERPH, MDPI, vol. 19(21), pages 1-22, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53786-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.