IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms10942.html
   My bibliography  Save this article

Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2

Author

Listed:
  • Elise M. Miner

    (Massachusetts Institute of Technology)

  • Tomohiro Fukushima

    (Massachusetts Institute of Technology)

  • Dennis Sheberla

    (Massachusetts Institute of Technology)

  • Lei Sun

    (Massachusetts Institute of Technology)

  • Yogesh Surendranath

    (Massachusetts Institute of Technology)

  • Mircea Dincă

    (Massachusetts Institute of Technology)

Abstract

Control over the architectural and electronic properties of heterogeneous catalysts poses a major obstacle in the targeted design of active and stable non-platinum group metal electrocatalysts for the oxygen reduction reaction. Here we introduce Ni3(HITP)2 (HITP=2, 3, 6, 7, 10, 11-hexaiminotriphenylene) as an intrinsically conductive metal-organic framework which functions as a well-defined, tunable oxygen reduction electrocatalyst in alkaline solution. Ni3(HITP)2 exhibits oxygen reduction activity competitive with the most active non-platinum group metal electrocatalysts and stability during extended polarization. The square planar Ni-N4 sites are structurally reminiscent of the highly active and widely studied non-platinum group metal electrocatalysts containing M-N4 units. Ni3(HITP)2 and analogues thereof combine the high crystallinity of metal-organic frameworks, the physical durability and electrical conductivity of graphitic materials, and the diverse yet well-controlled synthetic accessibility of molecular species. Such properties may enable the targeted synthesis and systematic optimization of oxygen reduction electrocatalysts as components of fuel cells and electrolysers for renewable energy applications.

Suggested Citation

  • Elise M. Miner & Tomohiro Fukushima & Dennis Sheberla & Lei Sun & Yogesh Surendranath & Mircea Dincă, 2016. "Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2," Nature Communications, Nature, vol. 7(1), pages 1-7, April.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10942
    DOI: 10.1038/ncomms10942
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms10942
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms10942?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhichao Pan & Xing Huang & Yunlong Fan & Shaoze Wang & Yiyu Liu & Xuzhong Cong & Tingsong Zhang & Shichao Qi & Ying Xing & Yu-Qing Zheng & Jian Li & Xiaoming Zhang & Wei Xu & Lei Sun & Jian Wang & Jin, 2024. "Synthesis and structure of a non-van-der-Waals two-dimensional coordination polymer with superconductivity," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.