IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53720-5.html
   My bibliography  Save this article

Intravascular delivery of an ultraflexible neural electrode array for recordings of cortical spiking activity

Author

Listed:
  • Xingzhao Wang

    (Chinese Academy of Sciences)

  • Shun Wu

    (Chinese Academy of Sciences)

  • Hantao Yang

    (Shanghai Geriatric Medical Center
    Zhongshan Hospital)

  • Yu Bao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zhi Li

    (Fudan University)

  • Changchun Gan

    (Chinese Academy of Sciences)

  • Yuanyuan Deng

    (ShanghaiTech University)

  • Junyan Cao

    (University of Shanghai for Science and Technology)

  • Xue Li

    (Chinese Academy of Sciences)

  • Yun Wang

    (Zhongshan Hospital
    Fudan University)

  • Chi Ren

    (Chinese Academy of Sciences)

  • Zhigang Yang

    (Zhongshan Hospital)

  • Zhengtuo Zhao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Although intracranial neural electrodes have significantly contributed to both fundamental research and clinical treatment of neurological diseases, their implantation requires invasive surgery to open craniotomies, which can introduce brain damage and disrupt normal brain functions. Recent emergence of endovascular neural devices offers minimally invasive approaches for neural recording and stimulation. However, existing endovascular neural devices are unable to resolve single-unit activity in large animal models or human patients, impeding a broader application as neural interfaces in clinical practice. Here, we present the ultraflexible implantable neural electrode as an intravascular device (uFINE-I) for recording brain activity at single-unit resolution. We successfully implanted uFINE-Is into the sheep occipital lobe by penetrating through the confluence of sinuses and recorded both local field potentials (LFPs) and multi-channel single-unit spiking activity under spontaneous and visually evoked conditions. Imaging and histological analysis revealed minimal tissue damage and immune response. The uFINE-I provides a practical solution for achieving high-resolution neural recording with minimal invasiveness and can be readily transferred to clinical settings for future neural interface applications such as brain-machine interfaces (BMIs) and the treatment of neurological diseases.

Suggested Citation

  • Xingzhao Wang & Shun Wu & Hantao Yang & Yu Bao & Zhi Li & Changchun Gan & Yuanyuan Deng & Junyan Cao & Xue Li & Yun Wang & Chi Ren & Zhigang Yang & Zhengtuo Zhao, 2024. "Intravascular delivery of an ultraflexible neural electrode array for recordings of cortical spiking activity," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53720-5
    DOI: 10.1038/s41467-024-53720-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53720-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53720-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Leigh R. Hochberg & Mijail D. Serruya & Gerhard M. Friehs & Jon A. Mukand & Maryam Saleh & Abraham H. Caplan & Almut Branner & David Chen & Richard D. Penn & John P. Donoghue, 2006. "Neuronal ensemble control of prosthetic devices by a human with tetraplegia," Nature, Nature, vol. 442(7099), pages 164-171, July.
    2. Leigh R. Hochberg & Daniel Bacher & Beata Jarosiewicz & Nicolas Y. Masse & John D. Simeral & Joern Vogel & Sami Haddadin & Jie Liu & Sydney S. Cash & Patrick van der Smagt & John P. Donoghue, 2012. "Reach and grasp by people with tetraplegia using a neurally controlled robotic arm," Nature, Nature, vol. 485(7398), pages 372-375, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ujwal Chaudhary & Bin Xia & Stefano Silvoni & Leonardo G Cohen & Niels Birbaumer, 2017. "Brain–Computer Interface–Based Communication in the Completely Locked-In State," PLOS Biology, Public Library of Science, vol. 15(1), pages 1-25, January.
    2. Eric A Pohlmeyer & Babak Mahmoudi & Shijia Geng & Noeline W Prins & Justin C Sanchez, 2014. "Using Reinforcement Learning to Provide Stable Brain-Machine Interface Control Despite Neural Input Reorganization," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-12, January.
    3. Josh Merel & David Carlson & Liam Paninski & John P Cunningham, 2016. "Neuroprosthetic Decoder Training as Imitation Learning," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-24, May.
    4. Andrés Úbeda & Enrique Hortal & Eduardo Iáñez & Carlos Perez-Vidal & Jose M Azorín, 2015. "Assessing Movement Factors in Upper Limb Kinematics Decoding from EEG Signals," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-12, May.
    5. Hong Gi Yeom & June Sic Kim & Chun Kee Chung, 2014. "High-Accuracy Brain-Machine Interfaces Using Feedback Information," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-7, July.
    6. Andrey Eliseyev & Tetiana Aksenova, 2016. "Penalized Multi-Way Partial Least Squares for Smooth Trajectory Decoding from Electrocorticographic (ECoG) Recording," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-19, May.
    7. Benjamin I Rapoport & Lorenzo Turicchia & Woradorn Wattanapanitch & Thomas J Davidson & Rahul Sarpeshkar, 2012. "Efficient Universal Computing Architectures for Decoding Neural Activity," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    8. Nuri F Ince & Rahul Gupta & Sami Arica & Ahmed H Tewfik & James Ashe & Giuseppe Pellizzer, 2010. "High Accuracy Decoding of Movement Target Direction in Non-Human Primates Based on Common Spatial Patterns of Local Field Potentials," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-11, December.
    9. Keundong Lee & Angelique C. Paulk & Yun Goo Ro & Daniel R. Cleary & Karen J. Tonsfeldt & Yoav Kfir & John S. Pezaris & Youngbin Tchoe & Jihwan Lee & Andrew M. Bourhis & Ritwik Vatsyayan & Joel R. Mart, 2024. "Flexible, scalable, high channel count stereo-electrode for recording in the human brain," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. No-Sang Kwak & Klaus-Robert Müller & Seong-Whan Lee, 2017. "A convolutional neural network for steady state visual evoked potential classification under ambulatory environment," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-20, February.
    11. Michael Riss, 2014. "FTSPlot: Fast Time Series Visualization for Large Datasets," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-16, April.
    12. Baoguo Xu & Wenlong Li & Deping Liu & Kun Zhang & Minmin Miao & Guozheng Xu & Aiguo Song, 2022. "Continuous Hybrid BCI Control for Robotic Arm Using Noninvasive Electroencephalogram, Computer Vision, and Eye Tracking," Mathematics, MDPI, vol. 10(4), pages 1-20, February.
    13. Yasuhiko Nakanishi & Takufumi Yanagisawa & Duk Shin & Ryohei Fukuma & Chao Chen & Hiroyuki Kambara & Natsue Yoshimura & Masayuki Hirata & Toshiki Yoshimine & Yasuharu Koike, 2013. "Prediction of Three-Dimensional Arm Trajectories Based on ECoG Signals Recorded from Human Sensorimotor Cortex," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-9, August.
    14. Ke Yu & Hasan AI-Nashash & Nitish Thakor & Xiaoping Li, 2014. "The Analytic Bilinear Discrimination of Single-Trial EEG Signals in Rapid Image Triage," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-10, June.
    15. Fan Li & Jazlyn Gallego & Natasha N. Tirko & Jenna Greaser & Derek Bashe & Rudra Patel & Eric Shaker & Grace E. Valkenburg & Alanoud S. Alsubhi & Steven Wellman & Vanshika Singh & Camila Garcia Padill, 2024. "Low-intensity pulsed ultrasound stimulation (LIPUS) modulates microglial activation following intracortical microelectrode implantation," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    16. Xiao-yu Sun & Bin Ye, 2023. "The functional differentiation of brain–computer interfaces (BCIs) and its ethical implications," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-9, December.
    17. Zheng Li & Joseph E O'Doherty & Timothy L Hanson & Mikhail A Lebedev & Craig S Henriquez & Miguel A L Nicolelis, 2009. "Unscented Kalman Filter for Brain-Machine Interfaces," PLOS ONE, Public Library of Science, vol. 4(7), pages 1-18, July.
    18. David Balderas & Pedro Ponce & Diego Lopez-Bernal & Arturo Molina, 2021. "Education 4.0: Teaching the Basis of Motor Imagery Classification Algorithms for Brain-Computer Interfaces," Future Internet, MDPI, vol. 13(8), pages 1-27, August.
    19. Tomislav Milekovic & Tonio Ball & Andreas Schulze-Bonhage & Ad Aertsen & Carsten Mehring, 2013. "Detection of Error Related Neuronal Responses Recorded by Electrocorticography in Humans during Continuous Movements," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-20, February.
    20. Betz, Ulrich A.K. & Arora, Loukik & Assal, Reem A. & Azevedo, Hatylas & Baldwin, Jeremy & Becker, Michael S. & Bostock, Stefan & Cheng, Vinton & Egle, Tobias & Ferrari, Nicola & Schneider-Futschik, El, 2023. "Game changers in science and technology - now and beyond," Technological Forecasting and Social Change, Elsevier, vol. 193(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53720-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.