IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007118.html
   My bibliography  Save this article

The dynamics of motor learning through the formation of internal models

Author

Listed:
  • Camilla Pierella
  • Maura Casadio
  • Ferdinando A Mussa-Ivaldi
  • Sara A Solla

Abstract

A medical student learning to perform a laparoscopic procedure or a recently paralyzed user of a powered wheelchair must learn to operate machinery via interfaces that translate their actions into commands for an external device. Since the user’s actions are selected from a number of alternatives that would result in the same effect in the control space of the external device, learning to use such interfaces involves dealing with redundancy. Subjects need to learn an externally chosen many-to-one map that transforms their actions into device commands. Mathematically, we describe this type of learning as a deterministic dynamical process, whose state is the evolving forward and inverse internal models of the interface. The forward model predicts the outcomes of actions, while the inverse model generates actions designed to attain desired outcomes. Both the mathematical analysis of the proposed model of learning dynamics and the learning performance observed in a group of subjects demonstrate a first-order exponential convergence of the learning process toward a particular state that depends only on the initial state of the inverse and forward models and on the sequence of targets supplied to the users. Noise is not only present but necessary for the convergence of learning through the minimization of the difference between actual and predicted outcomes.Author summary: Several studies have suggested that as we learn a new skill our brain forms representations, or “internal models”, of both the skill and the environment in which we operate. Theories of motor learning postulate that the brain builds forward models that predict the sensory consequences of motor commands, and inverse models that generate successful commands from movement goals. We test this hypothesis by taking advantage of an interface that relates the user’s actions to the position of a cursor on a computer monitor, thus allowing users to control an external device through body movements. We recorded the motions of the body and of the cursor, and used this data to estimate forward and inverse models. We followed the time evolution of these estimated models as interface users practiced and acquired a new skill. We found that the description of learning as a simple deterministic process driven by the presented sequence of targets is sufficient to capture the observed convergence to a single solution of the inverse model among an infinite variety of possibilities. This work is relevant to the study of fundamental learning mechanisms as well as to the design of intelligent interfaces for people with paralysis.

Suggested Citation

  • Camilla Pierella & Maura Casadio & Ferdinando A Mussa-Ivaldi & Sara A Solla, 2019. "The dynamics of motor learning through the formation of internal models," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-25, December.
  • Handle: RePEc:plo:pcbi00:1007118
    DOI: 10.1371/journal.pcbi.1007118
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007118
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007118&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Leigh R. Hochberg & Mijail D. Serruya & Gerhard M. Friehs & Jon A. Mukand & Maryam Saleh & Abraham H. Caplan & Almut Branner & David Chen & Richard D. Penn & John P. Donoghue, 2006. "Neuronal ensemble control of prosthetic devices by a human with tetraplegia," Nature, Nature, vol. 442(7099), pages 164-171, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin I Rapoport & Lorenzo Turicchia & Woradorn Wattanapanitch & Thomas J Davidson & Rahul Sarpeshkar, 2012. "Efficient Universal Computing Architectures for Decoding Neural Activity," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    2. Ujwal Chaudhary & Bin Xia & Stefano Silvoni & Leonardo G Cohen & Niels Birbaumer, 2017. "Brain–Computer Interface–Based Communication in the Completely Locked-In State," PLOS Biology, Public Library of Science, vol. 15(1), pages 1-25, January.
    3. Nuri F Ince & Rahul Gupta & Sami Arica & Ahmed H Tewfik & James Ashe & Giuseppe Pellizzer, 2010. "High Accuracy Decoding of Movement Target Direction in Non-Human Primates Based on Common Spatial Patterns of Local Field Potentials," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-11, December.
    4. No-Sang Kwak & Klaus-Robert Müller & Seong-Whan Lee, 2017. "A convolutional neural network for steady state visual evoked potential classification under ambulatory environment," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-20, February.
    5. Michael Riss, 2014. "FTSPlot: Fast Time Series Visualization for Large Datasets," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-16, April.
    6. Yasuhiko Nakanishi & Takufumi Yanagisawa & Duk Shin & Ryohei Fukuma & Chao Chen & Hiroyuki Kambara & Natsue Yoshimura & Masayuki Hirata & Toshiki Yoshimine & Yasuharu Koike, 2013. "Prediction of Three-Dimensional Arm Trajectories Based on ECoG Signals Recorded from Human Sensorimotor Cortex," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-9, August.
    7. Ke Yu & Hasan AI-Nashash & Nitish Thakor & Xiaoping Li, 2014. "The Analytic Bilinear Discrimination of Single-Trial EEG Signals in Rapid Image Triage," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-10, June.
    8. Zheng Li & Joseph E O'Doherty & Timothy L Hanson & Mikhail A Lebedev & Craig S Henriquez & Miguel A L Nicolelis, 2009. "Unscented Kalman Filter for Brain-Machine Interfaces," PLOS ONE, Public Library of Science, vol. 4(7), pages 1-18, July.
    9. Tomislav Milekovic & Tonio Ball & Andreas Schulze-Bonhage & Ad Aertsen & Carsten Mehring, 2013. "Detection of Error Related Neuronal Responses Recorded by Electrocorticography in Humans during Continuous Movements," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-20, February.
    10. Burkhart, Michael C., 2019. "A Discriminative Approach to Bayesian Filtering with Applications to Human Neural Decoding," Thesis Commons 4j3fu_v1, Center for Open Science.
    11. Eric A Pohlmeyer & Babak Mahmoudi & Shijia Geng & Noeline W Prins & Justin C Sanchez, 2014. "Using Reinforcement Learning to Provide Stable Brain-Machine Interface Control Despite Neural Input Reorganization," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-12, January.
    12. Josh Merel & David Carlson & Liam Paninski & John P Cunningham, 2016. "Neuroprosthetic Decoder Training as Imitation Learning," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-24, May.
    13. Andrés Úbeda & Enrique Hortal & Eduardo Iáñez & Carlos Perez-Vidal & Jose M Azorín, 2015. "Assessing Movement Factors in Upper Limb Kinematics Decoding from EEG Signals," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-12, May.
    14. Dimitris Boufidis & Raghav Garg & Eugenia Angelopoulos & D. Kacy Cullen & Flavia Vitale, 2025. "Bio-inspired electronics: Soft, biohybrid, and “living” neural interfaces," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    15. Ujwal Chaudhary & Ioannis Vlachos & Jonas B. Zimmermann & Arnau Espinosa & Alessandro Tonin & Andres Jaramillo-Gonzalez & Majid Khalili-Ardali & Helge Topka & Jens Lehmberg & Gerhard M. Friehs & Alain, 2022. "Spelling interface using intracortical signals in a completely locked-in patient enabled via auditory neurofeedback training," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Xingzhao Wang & Shun Wu & Hantao Yang & Yu Bao & Zhi Li & Changchun Gan & Yuanyuan Deng & Junyan Cao & Xue Li & Yun Wang & Chi Ren & Zhigang Yang & Zhengtuo Zhao, 2024. "Intravascular delivery of an ultraflexible neural electrode array for recordings of cortical spiking activity," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    17. Javier León & Juan José Escobar & Andrés Ortiz & Julio Ortega & Jesús González & Pedro Martín-Smith & John Q Gan & Miguel Damas, 2020. "Deep learning for EEG-based Motor Imagery classification: Accuracy-cost trade-off," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-30, June.
    18. Maryam M Shanechi & Ziv M Williams & Gregory W Wornell & Rollin C Hu & Marissa Powers & Emery N Brown, 2013. "A Real-Time Brain-Machine Interface Combining Motor Target and Trajectory Intent Using an Optimal Feedback Control Design," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-16, April.
    19. Hong Gi Yeom & June Sic Kim & Chun Kee Chung, 2014. "High-Accuracy Brain-Machine Interfaces Using Feedback Information," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-7, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.