IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53585-8.html
   My bibliography  Save this article

NEK4 modulates circadian fluctuations of emotional behaviors and synaptogenesis in male mice

Author

Listed:
  • Zhi-Hui Yang

    (Chinese Academy of Sciences
    Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xin Cai

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Chu-Yi Zhang

    (Chinese Academy of Sciences
    Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Qing Zhang

    (Ningbo University
    Ningbo University)

  • Miao Li

    (Chinese Academy of Sciences
    Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zhong-Li Ding

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Yingqi Guo

    (Chinese Academy of Sciences)

  • Guolan Ma

    (Chinese Academy of Sciences)

  • Chao-Hao Yang

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Lei Guo

    (Ningbo University
    Ningbo University)

  • Hong Chang

    (Chinese Academy of Sciences
    Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Chuang Wang

    (Ningbo University
    Ningbo University)

  • Ming Li

    (Chinese Academy of Sciences
    Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Xiao Xiao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

Abstract

GWASs have linked the 3p21.1 locus, which is associated with the expression levels of NEK4, to bipolar disorder. Here, we use integrative analyses of GWAS statistics and eQTL annotations to establish that elevated NEK4 expression in the hippocampus is associated with an increased risk of bipolar disorder. To further study this association, we generate transgenic male mice that conditionally overexpress NEK4 in the pyramidal neurons of the adult forebrain, or use AAV to overexpress NEK4 in the dorsal hippocampus. Compared to the control mice, male mice of both strains exhibit a shift from a diurnal anxiety state to a nocturnal normal or anxiolytic-like state. Overexpression of NEK4 also affects the circadian fluctuations in dendritic spine morphology and synaptic structure. Furthermore, we show that treatment with lithium ameliorates the effects of NEK4 overexpression in male mice. We then perform phosphoproteomic analyses to demonstrate that the diurnal and nocturnal phosphoproteomic profiles of male control and NEK4 overexpressing mice are different. These results suggest that male mice with different NEK4 expression levels may recapitulate some of the core features observed in patients with bipolar disorder, indicating that interruption of the homeostatic dynamics of synapses may underlie the emotional swings in bipolar disorder.

Suggested Citation

  • Zhi-Hui Yang & Xin Cai & Chu-Yi Zhang & Qing Zhang & Miao Li & Zhong-Li Ding & Yingqi Guo & Guolan Ma & Chao-Hao Yang & Lei Guo & Hong Chang & Chuang Wang & Ming Li & Xiao Xiao, 2024. "NEK4 modulates circadian fluctuations of emotional behaviors and synaptogenesis in male mice," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53585-8
    DOI: 10.1038/s41467-024-53585-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53585-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53585-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Smyth Gordon K, 2004. "Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-28, February.
    2. Li Ma & Feng Wang & Yangping Li & Jing Wang & Qing Chang & Yuanning Du & Jotham Sadan & Zhen Zhao & Guoping Fan & Bing Yao & Jian-Fu Chen, 2023. "Brain methylome remodeling selectively regulates neuronal activity genes linking to emotional behaviors in mice exposed to maternal immune activation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Yingyao Zhou & Bin Zhou & Lars Pache & Max Chang & Alireza Hadj Khodabakhshi & Olga Tanaseichuk & Christopher Benner & Sumit K. Chanda, 2019. "Metascape provides a biologist-oriented resource for the analysis of systems-level datasets," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    4. Kihoon Han & J. Lloyd Holder Jr & Christian P. Schaaf & Hui Lu & Hongmei Chen & Hyojin Kang & Jianrong Tang & Zhenyu Wu & Shuang Hao & Sau Wai Cheung & Peng Yu & Hao Sun & Amy M. Breman & Ankita Patel, 2013. "SHANK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties," Nature, Nature, vol. 503(7474), pages 72-77, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Irati Macaya & Marta Roman & Connor Welch & Rodrigo Entrialgo-Cadierno & Marina Salmon & Alba Santos & Iker Feliu & Joanna Kovalski & Ines Lopez & Maria Rodriguez-Remirez & Sara Palomino-Echeverria & , 2023. "Signature-driven repurposing of Midostaurin for combination with MEK1/2 and KRASG12C inhibitors in lung cancer," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Aaron C Ericsson & J Wade Davis & William Spollen & Nathan Bivens & Scott Givan & Catherine E Hagan & Mark McIntosh & Craig L Franklin, 2015. "Effects of Vendor and Genetic Background on the Composition of the Fecal Microbiota of Inbred Mice," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-19, February.
    3. Xiangwei Li & Thomas Delerue & Ben Schöttker & Bernd Holleczek & Eva Grill & Annette Peters & Melanie Waldenberger & Barbara Thorand & Hermann Brenner, 2022. "Derivation and validation of an epigenetic frailty risk score in population-based cohorts of older adults," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Ahrum Son & Hyunsoo Kim & Jolene K. Diedrich & Casimir Bamberger & Daniel B. McClatchy & Stuart A. Lipton & John R. Yates, 2024. "Using in vivo intact structure for system-wide quantitative analysis of changes in proteins," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Hossain, Ahmed & Beyene, Joseph & Willan, Andrew R. & Hu, Pingzhao, 2009. "A flexible approximate likelihood ratio test for detecting differential expression in microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3685-3695, August.
    6. Yasuhiko Haga & Yoshitaka Sakamoto & Keiko Kajiya & Hitomi Kawai & Miho Oka & Noriko Motoi & Masayuki Shirasawa & Masaya Yotsukura & Shun-Ichi Watanabe & Miyuki Arai & Junko Zenkoh & Kouya Shiraishi &, 2023. "Whole-genome sequencing reveals the molecular implications of the stepwise progression of lung adenocarcinoma," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    7. Jialiang S. Wang & Tushar Kamath & Courtney M. Mazur & Fatemeh Mirzamohammadi & Daniel Rotter & Hironori Hojo & Christian D. Castro & Nicha Tokavanich & Rushi Patel & Nicolas Govea & Tetsuya Enishi & , 2021. "Control of osteocyte dendrite formation by Sp7 and its target gene osteocrin," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    8. Xiaohong Li & Guy N Brock & Eric C Rouchka & Nigel G F Cooper & Dongfeng Wu & Timothy E O’Toole & Ryan S Gill & Abdallah M Eteleeb & Liz O’Brien & Shesh N Rai, 2017. "A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-22, May.
    9. Kerr Kathleen F., 2012. "Optimality Criteria for the Design of 2-Color Microarray Studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(1), pages 1-9, January.
    10. Ambroise Jérôme & Bearzatto Bertrand & Robert Annie & Macq Benoit & Gala Jean-Luc, 2012. "Combining Multiple Laser Scans of Spotted Microarrays by Means of a Two-Way ANOVA Model," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-20, February.
    11. J. McClatchy & R. Strogantsev & E. Wolfe & H. Y. Lin & M. Mohammadhosseini & B. A. Davis & C. Eden & D. Goldman & W. H. Fleming & P. Conley & G. Wu & L. Cimmino & H. Mohammed & A. Agarwal, 2023. "Clonal hematopoiesis related TET2 loss-of-function impedes IL1β-mediated epigenetic reprogramming in hematopoietic stem and progenitor cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Ryan J. Geusz & Allen Wang & Dieter K. Lam & Nicholas K. Vinckier & Konstantinos-Dionysios Alysandratos & David A. Roberts & Jinzhao Wang & Samy Kefalopoulou & Araceli Ramirez & Yunjiang Qiu & Joshua , 2021. "Sequence logic at enhancers governs a dual mechanism of endodermal organ fate induction by FOXA pioneer factors," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    13. Alexandra Gyurdieva & Stefan Zajic & Ya-Fang Chang & E. Andres Houseman & Shan Zhong & Jaegil Kim & Michael Nathenson & Thomas Faitg & Mary Woessner & David C. Turner & Aisha N. Hasan & John Glod & Ro, 2022. "Biomarker correlates with response to NY-ESO-1 TCR T cells in patients with synovial sarcoma," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    14. Sora Yoon & Seon-Young Kim & Dougu Nam, 2016. "Improving Gene-Set Enrichment Analysis of RNA-Seq Data with Small Replicates," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-16, November.
    15. Yu Lianbo & Gulati Parul & Fernandez Soledad & Pennell Michael & Kirschner Lawrence & Jarjoura David, 2011. "Fully Moderated T-statistic for Small Sample Size Gene Expression Arrays," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, September.
    16. Andreas Herchenröther & Stefanie Gossen & Tobias Friedrich & Alexander Reim & Nadine Daus & Felix Diegmüller & Jörg Leers & Hakimeh Moghaddas Sani & Sarah Gerstner & Leah Schwarz & Inga Stellmacher & , 2023. "The H2A.Z and NuRD associated protein HMG20A controls early head and heart developmental transcription programs," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    17. Sinan Xiong & Jianbiao Zhou & Tze King Tan & Tae-Hoon Chung & Tuan Zea Tan & Sabrina Hui-Min Toh & Nicole Xin Ning Tang & Yunlu Jia & Yi Xiang See & Melissa Jane Fullwood & Takaomi Sanda & Wee-Joo Chn, 2024. "Super enhancer acquisition drives expression of oncogenic PPP1R15B that regulates protein homeostasis in multiple myeloma," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    18. Aftab Nadeem & Athar Alam & Eric Toh & Si Lhyam Myint & Zia ur Rehman & Tao Liu & Marta Bally & Anna Arnqvist & Hui Wang & Jun Zhu & Karina Persson & Bernt Eric Uhlin & Sun Nyunt Wai, 2021. "Phosphatidic acid-mediated binding and mammalian cell internalization of the Vibrio cholerae cytotoxin MakA," PLOS Pathogens, Public Library of Science, vol. 17(3), pages 1-34, March.
    19. Hao A. Duong & Kenkichi Baba & Jason P. DeBruyne & Alec J. Davidson & Christopher Ehlen & Michael Powell & Gianluca Tosini, 2024. "Environmental circadian disruption re-writes liver circadian proteomes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    20. Chaofeng Yuan & Wensheng Zhu & Xuming He & Jianhua Guo, 2019. "A mixture factor model with applications to microarray data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 60-76, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53585-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.