IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53521-w.html
   My bibliography  Save this article

Reward recalibrates rule representations in human amygdala and hippocampus intracranial recordings

Author

Listed:
  • Luis Manssuer

    (Shanghai Jiao Tong University School of Medicine
    University of Cambridge
    Fudan University)

  • Qiong Ding

    (University of Cambridge)

  • Yashu Feng

    (Fudan University)

  • Ruoqi Yang

    (Fudan University)

  • Wei Liu

    (Shanghai Jiao Tong University School of Medicine)

  • Bomin Sun

    (Shanghai Jiao Tong University School of Medicine)

  • Shikun Zhan

    (Shanghai Jiao Tong University School of Medicine)

  • Valerie Voon

    (Shanghai Jiao Tong University School of Medicine
    University of Cambridge
    Fudan University)

Abstract

Adaptive behavior requires the ability to shift responding within (intra-dimensional) or between (extra-dimensional) stimulus dimensions when reward contingencies change. Studies of shifting in humans have focused mainly on the prefrontal cortex and/ or have been restricted to indirect measures of neural activity such as fMRI and lesions. Here, we demonstrate the importance of the amygdala and hippocampus by recording local field potentials directly from these regions intracranially in human epilepsy patients. Reward signals were coded in the high frequency gamma activity (HFG; 60-250 Hz) of both regions and synchronised via low frequency (3-5 Hz) phase-locking only after a shift when patients did not already know the rule and it signalled to stop shifting (“Win-Stay”). In contrast, HFG punishment signals were only seen in the amygdala when the rule then changed and it signalled to start shifting (“Lose-Shift”). During decision-making, hippocampal HFG was more inhibited on non-shift relative to shift trials, suggesting a role in preventing interference in rule representation and amygdala HFG was sensitive to stimulus novelty. The findings expand our understanding of human amygdala-hippocampal function and shifting processes, the disruption of which could contribute to shifting deficits in neuropsychiatric disorders.

Suggested Citation

  • Luis Manssuer & Qiong Ding & Yashu Feng & Ruoqi Yang & Wei Liu & Bomin Sun & Shikun Zhan & Valerie Voon, 2024. "Reward recalibrates rule representations in human amygdala and hippocampus intracranial recordings," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53521-w
    DOI: 10.1038/s41467-024-53521-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53521-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53521-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tao Xie & Markus Adamek & Hohyun Cho & Matthew A. Adamo & Anthony L. Ritaccio & Jon T. Willie & Peter Brunner & Jan Kubanek, 2024. "Graded decisions in the human brain," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Joseph J. Paton & Marina A. Belova & Sara E. Morrison & C. Daniel Salzman, 2006. "The primate amygdala represents the positive and negative value of visual stimuli during learning," Nature, Nature, vol. 439(7078), pages 865-870, February.
    3. Nikos K. Logothetis, 2008. "What we can do and what we cannot do with fMRI," Nature, Nature, vol. 453(7197), pages 869-878, June.
    4. Erin L. Rich & Joni D. Wallis, 2017. "Spatiotemporal dynamics of information encoding revealed in orbitofrontal high-gamma," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hum:wpaper:sfb649dp2014-036 is not listed on IDEAS
    2. Jan Weber & Anne-Kristin Solbakk & Alejandro O. Blenkmann & Anais Llorens & Ingrid Funderud & Sabine Leske & Pål Gunnar Larsson & Jugoslav Ivanovic & Robert T. Knight & Tor Endestad & Randolph F. Helf, 2024. "Ramping dynamics and theta oscillations reflect dissociable signatures during rule-guided human behavior," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Alejandro Morán & Miguel C Soriano, 2018. "Improving the quality of a collective signal in a consumer EEG headset," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-21, May.
    4. Adam S. Tuzolele Mbuku, 2024. "Evolution of the concept of Homo Economicus in light of advances in Neuroeconomics: towards a more realistic model of economic decision-making [Evolution du concept de l'Homo Economicus à la lumièr," Post-Print hal-04564775, HAL.
    5. Wan-Yu Shih & Hsiang-Yu Yu & Cheng-Chia Lee & Chien-Chen Chou & Chien Chen & Paul W. Glimcher & Shih-Wei Wu, 2023. "Electrophysiological population dynamics reveal context dependencies during decision making in human frontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    6. Hiroyuki Kawai & Youcef Bouchekioua & Naoya Nishitani & Kazuhei Niitani & Shoma Izumi & Hinako Morishita & Chihiro Andoh & Yuma Nagai & Masashi Koda & Masako Hagiwara & Koji Toda & Hisashi Shirakawa &, 2022. "Median raphe serotonergic neurons projecting to the interpeduncular nucleus control preference and aversion," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    7. Ren-Wen Han & Zi-Yi Zhang & Chen Jiao & Ze-Yu Hu & Bing-Xing Pan, 2024. "Synergism between two BLA-to-BNST pathways for appropriate expression of anxiety-like behaviors in male mice," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    8. Pérez-Centeno, Victor, 2018. "Brain-driven entrepreneurship research: Expanded review and research agenda towards entrepreneurial enhancement," Working Papers 02/18, Institut für Mittelstandsforschung (IfM) Bonn.
    9. Olsen, Carmen & Gold, Anna, 2018. "Future research directions at the intersection between cognitive neuroscience research and auditors’ professional skepticism," Journal of Accounting Literature, Elsevier, vol. 41(C), pages 127-141.
    10. Hsieh, Tien-Shih & Kim, Jeong-Bon & Wang, Ray R. & Wang, Zhihong, 2020. "Seeing is believing? Executives' facial trustworthiness, auditor tenure, and audit fees," Journal of Accounting and Economics, Elsevier, vol. 69(1).
    11. Rafal Rygula & Helena Pluta & Piotr Popik, 2012. "Laughing Rats Are Optimistic," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-6, December.
    12. Eleonora Maggioni & Jorge Arrubla & Tracy Warbrick & Jürgen Dammers & Anna M Bianchi & Gianluigi Reni & Michela Tosetti & Irene Neuner & N Jon Shah, 2014. "Removal of Pulse Artefact from EEG Data Recorded in MR Environment at 3T. Setting of ICA Parameters for Marking Artefactual Components: Application to Resting-State Data," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-15, November.
    13. Daniella Laureiro-Martínez & Stefano Brusoni & Nicola Canessa & Maurizio Zollo, 2015. "Understanding the exploration–exploitation dilemma: An fMRI study of attention control and decision-making performance," Strategic Management Journal, Wiley Blackwell, vol. 36(3), pages 319-338, March.
    14. John A Clithero & Dharol Tankersley & Scott A Huettel, 2008. "Foundations of Neuroeconomics: From Philosophy to Practice," PLOS Biology, Public Library of Science, vol. 6(11), pages 1-6, November.
    15. Federico Rocchi & Carola Canella & Shahryar Noei & Daniel Gutierrez-Barragan & Ludovico Coletta & Alberto Galbusera & Alexia Stuefer & Stefano Vassanelli & Massimo Pasqualetti & Giuliano Iurilli & Ste, 2022. "Increased fMRI connectivity upon chemogenetic inhibition of the mouse prefrontal cortex," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Hadi Vafaii & Francesca Mandino & Gabriel Desrosiers-Grégoire & David O’Connor & Marija Markicevic & Xilin Shen & Xinxin Ge & Peter Herman & Fahmeed Hyder & Xenophon Papademetris & Mallar Chakravarty , 2024. "Multimodal measures of spontaneous brain activity reveal both common and divergent patterns of cortical functional organization," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    17. Munro, Eileen & Musholt, Kristina, 2014. "Neuroscience and the risks of maltreatment," Children and Youth Services Review, Elsevier, vol. 47(P1), pages 18-26.
    18. Choong-Wan Woo & Mathieu Roy & Jason T Buhle & Tor D Wager, 2015. "Distinct Brain Systems Mediate the Effects of Nociceptive Input and Self-Regulation on Pain," PLOS Biology, Public Library of Science, vol. 13(1), pages 1-14, January.
    19. Macauley Smith Breault & Pierre Sacré & Zachary B. Fitzgerald & John T. Gale & Kathleen E. Cullen & Jorge A. González-Martínez & Sridevi V. Sarma, 2023. "Internal states as a source of subject-dependent movement variability are represented by large-scale brain networks," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    20. Nicos Nicolaou & Phillip H. Phan & Ute Stephan, 2021. "The Biological Perspective in Entrepreneurship Research," Entrepreneurship Theory and Practice, , vol. 45(1), pages 3-17, January.
    21. Eva R. Pool & Wolfgang M. Pauli & Logan Cross & John P. O’Doherty, 2023. "Neural substrates of parallel devaluation-sensitive and devaluation-insensitive Pavlovian learning in humans," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53521-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.