IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53488-8.html
   My bibliography  Save this article

Zn/Pt dual-site single-atom driven difunctional superimposition-augmented sonosensitizer for sonodynamic therapy boosted ferroptosis of cancer

Author

Listed:
  • Ding Wen

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Jing Feng

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Ruiping Deng

    (Chinese Academy of Sciences)

  • Kai Li

    (Chinese Academy of Sciences)

  • Hongjie Zhang

    (Chinese Academy of Sciences
    University of Science and Technology of China
    Tsinghua University)

Abstract

Sonodynamic therapy (SDT) as a non-invasive antitumor strategy has been widely concerned. However, the rapid electron (e-) and hole (h+) recombination of traditional inorganic semiconductor sonosensitizers under ultrasonic (US) stimulation greatly limits the production of reactive oxygen species (ROS). Herein, we report a unique Zn/Pt dual-site single-atom driven difunctional superimposition-augmented TiO2-based sonosensitizer (Zn/Pt SATs). Initially, we verify through theoretical calculation that the strongly coupled Zn and Pt atoms can assist electron excitation at the atomic level by increasing electron conductivity and excitation efficiency under US, respectively, thus effectively improving the yield of ROS. Additionally, Zn/Pt SATs can significantly enhance ferroptosis by producing more ROS and sonoexcited holes under US stimuli. Therefore, the establishment of dual-site single-atom system represents an innovative strategy to enhance SDT in cancer model of female mice and provides a typical example for the development of inorganic sonosensitizer in the field of antitumor therapy.

Suggested Citation

  • Ding Wen & Jing Feng & Ruiping Deng & Kai Li & Hongjie Zhang, 2024. "Zn/Pt dual-site single-atom driven difunctional superimposition-augmented sonosensitizer for sonodynamic therapy boosted ferroptosis of cancer," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53488-8
    DOI: 10.1038/s41467-024-53488-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53488-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53488-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chao Liang & Jiaen Xie & Shuangling Luo & Can Huang & Qianling Zhang & Huaiyi Huang & Pingyu Zhang, 2021. "A highly potent ruthenium(II)-sonosensitizer and sonocatalyst for in vivo sonotherapy," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Fei Gong & Liang Cheng & Nailin Yang & Yuehan Gong & Yanwen Ni & Shang Bai & Xianwen Wang & Muchao Chen & Qian Chen & Zhuang Liu, 2020. "Preparation of TiH1.924 nanodots by liquid-phase exfoliation for enhanced sonodynamic cancer therapy," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    3. Bijiang Geng & Jinyan Hu & Yuan Li & Shini Feng & Dengyu Pan & Lingyan Feng & Longxiang Shen, 2022. "Near-infrared phosphorescent carbon dots for sonodynamic precision tumor therapy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Xiaoran Zhang & Xiaorong Zhu & Shuowen Bo & Chen Chen & Mengyi Qiu & Xiaoxiao Wei & Nihan He & Chao Xie & Wei Chen & Jianyun Zheng & Pinsong Chen & San Ping Jiang & Yafei Li & Qinghua Liu & Shuangyin , 2022. "Identifying and tailoring C–N coupling site for efficient urea synthesis over diatomic Fe–Ni catalyst," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian Wu & Chencheng Dai & Fanxu Meng & Yan Jiao & Zhichuan J. Xu, 2024. "Potential and electric double-layer effect in electrocatalytic urea synthesis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Yongjiang Li & Wei Chen & Yong Kang & Xueyan Zhen & Zhuoming Zhou & Chuang Liu & Shuying Chen & Xiangang Huang & Hai-Jun Liu & Seyoung Koo & Na Kong & Xiaoyuan Ji & Tian Xie & Wei Tao, 2023. "Nanosensitizer-mediated augmentation of sonodynamic therapy efficacy and antitumor immunity," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Yilong Zhao & Yunxuan Ding & Wenlong Li & Chang Liu & Yingzheng Li & Ziqi Zhao & Yu Shan & Fei Li & Licheng Sun & Fusheng Li, 2023. "Efficient urea electrosynthesis from carbon dioxide and nitrate via alternating Cu–W bimetallic C–N coupling sites," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Mengqiu Xu & Fangfang Wu & Ye Zhang & Yuanhui Yao & Genping Zhu & Xiaoyu Li & Liang Chen & Gan Jia & Xiaohong Wu & Youju Huang & Peng Gao & Wei Ye, 2023. "Kinetically matched C–N coupling toward efficient urea electrosynthesis enabled on copper single-atom alloy," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Yufu Tang & Yuanyuan Li & Bowen Li & Wentao Song & Guobin Qi & Jianwu Tian & Wei Huang & Quli Fan & Bin Liu, 2024. "Oxygen-independent organic photosensitizer with ultralow-power NIR photoexcitation for tumor-specific photodynamic therapy," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Han Li & Leitao Xu & Shuowen Bo & Yujie Wang & Han Xu & Chen Chen & Ruping Miao & Dawei Chen & Kefan Zhang & Qinghua Liu & Jingjun Shen & Huaiyu Shao & Jianfeng Jia & Shuangyin Wang, 2024. "Ligand engineering towards electrocatalytic urea synthesis on a molecular catalyst," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Guang-Song Zheng & Cheng-Long Shen & Chun-Yao Niu & Qing Lou & Tian-Ci Jiang & Peng-Fei Li & Xiao-Jing Shi & Run-Wei Song & Yuan Deng & Chao-Fan Lv & Kai-Kai Liu & Jin-Hao Zang & Zhe Cheng & Lin Dong , 2024. "Photooxidation triggered ultralong afterglow in carbon nanodots," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Nong Lu & Zhihong Deng & Jing Gao & Chao Liang & Haiping Xia & Pingyu Zhang, 2022. "An osmium-peroxo complex for photoactive therapy of hypoxic tumors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Bijiang Geng & Jinyan Hu & Yuan Li & Shini Feng & Dengyu Pan & Lingyan Feng & Longxiang Shen, 2022. "Near-infrared phosphorescent carbon dots for sonodynamic precision tumor therapy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53488-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.