IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53339-6.html
   My bibliography  Save this article

Vertically oriented low-dimensional perovskites for high-efficiency wide band gap perovskite solar cells

Author

Listed:
  • Andrea Zanetta

    (Via T. Taramelli 14)

  • Valentina Larini

    (Via T. Taramelli 14)

  • Vikram

    (University of Oxford)

  • Francesco Toniolo

    (Via T. Taramelli 14)

  • Badri Vishal

    (Physical Sciences and Engineering Division (PSE))

  • Karim A. Elmestekawy

    (Clarendon Laboratory)

  • Jiaxing Du

    (Clarendon Laboratory)

  • Alice Scardina

    (Via T. Taramelli 14)

  • Fabiola Faini

    (Via T. Taramelli 14)

  • Giovanni Pica

    (Via T. Taramelli 14)

  • Valentina Pirota

    (Via T. Taramelli 14)

  • Matteo Pitaro

    (University of Groningen Nijenborgh 3 (Feringa Building))

  • Sergio Marras

    (Via Morego 30)

  • Changzeng Ding

    (SIP)

  • Bumin K. Yildirim

    (Physical Sciences and Engineering Division (PSE))

  • Maxime Babics

    (Physical Sciences and Engineering Division (PSE))

  • Esma Ugur

    (Physical Sciences and Engineering Division (PSE))

  • Erkan Aydin

    (Physical Sciences and Engineering Division (PSE)
    Butenandtstraße 5−13)

  • Chang-Qi Ma

    (SIP)

  • Filippo Doria

    (Via T. Taramelli 14)

  • Maria Antonietta Loi

    (University of Groningen Nijenborgh 3 (Feringa Building))

  • Michele De Bastiani

    (Via T. Taramelli 14)

  • Laura M. Herz

    (Clarendon Laboratory)

  • Giuseppe Portale

    (University of Groningen Nijenborgh 3 (Feringa Building))

  • Stefaan De Wolf

    (Physical Sciences and Engineering Division (PSE))

  • M. Saiful Islam

    (University of Oxford)

  • Giulia Grancini

    (Via T. Taramelli 14)

Abstract

Controlling crystal growth alignment in low-dimensional perovskites (LDPs) for solar cells has been a persistent challenge, especially for low-n LDPs (n 1.7 eV) impeding charge flow. Here we overcome such transport limits by inducing vertical crystal growth through the addition of chlorine to the precursor solution. In contrast to 3D halide perovskites (APbX3), we find that Cl substitutes I in the equatorial position of the unit cell, inducing a vertical strain in the perovskite octahedra, and is critical for initiating vertical growth. Atomistic modelling demonstrates the thermodynamic stability and miscibility of Cl/I structures indicating the preferential arrangement for Cl-incorporation at I-sites. Vertical alignment persists at the solar cell level, giving rise to a record 9.4% power conversion efficiency with a 1.4 V open circuit voltage, the highest reported for a 2 eV wide band gap device. This study demonstrates an atomic-level understanding of crystal tunability in low-n LDPs and unlocks new device possibilities for smart solar facades and indoor energy generation.

Suggested Citation

  • Andrea Zanetta & Valentina Larini & Vikram & Francesco Toniolo & Badri Vishal & Karim A. Elmestekawy & Jiaxing Du & Alice Scardina & Fabiola Faini & Giovanni Pica & Valentina Pirota & Matteo Pitaro & , 2024. "Vertically oriented low-dimensional perovskites for high-efficiency wide band gap perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53339-6
    DOI: 10.1038/s41467-024-53339-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53339-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53339-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hsinhan Tsai & Wanyi Nie & Jean-Christophe Blancon & Constantinos C. Stoumpos & Reza Asadpour & Boris Harutyunyan & Amanda J. Neukirch & Rafael Verduzco & Jared J. Crochet & Sergei Tretiak & Laurent P, 2016. "High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells," Nature, Nature, vol. 536(7616), pages 312-316, August.
    2. Christopher J. Traverse & Richa Pandey & Miles C. Barr & Richard R. Lunt, 2017. "Emergence of highly transparent photovoltaics for distributed applications," Nature Energy, Nature, vol. 2(11), pages 849-860, November.
    3. Zaiwei Wang & Lewei Zeng & Tong Zhu & Hao Chen & Bin Chen & Dominik J. Kubicki & Adam Balvanz & Chongwen Li & Aidan Maxwell & Esma Ugur & Roberto Reis & Matthew Cheng & Guang Yang & Biwas Subedi & Dey, 2023. "Suppressed phase segregation for triple-junction perovskite solar cells," Nature, Nature, vol. 618(7963), pages 74-79, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zimmerman, Ryan & Panda, Anurag & Bulović, Vladimir, 2020. "Techno-economic assessment and deployment strategies for vertically-mounted photovoltaic panels," Applied Energy, Elsevier, vol. 276(C).
    2. Gorjian, Shiva & Bousi, Erion & Özdemir, Özal Emre & Trommsdorff, Max & Kumar, Nallapaneni Manoj & Anand, Abhishek & Kant, Karunesh & Chopra, Shauhrat S., 2022. "Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Woo, JongRoul & Moon, Sungho & Choi, Hyunhong, 2022. "Economic value and acceptability of advanced solar power systems for multi-unit residential buildings: The case of South Korea," Applied Energy, Elsevier, vol. 324(C).
    4. Li, Zhenpeng & Ma, Tao, 2022. "Theoretic efficiency limit and design criteria of solar photovoltaics with high visual perceptibility," Applied Energy, Elsevier, vol. 324(C).
    5. Cheng-Chieh Lin & Shing-Jong Huang & Pei-Hao Wu & Tzu-Pei Chen & Chih-Ying Huang & Ying-Chiao Wang & Po-Tuan Chen & Denitsa Radeva & Ognyan Petrov & Vladimir M. Gelev & Raman Sankar & Chia-Chun Chen &, 2022. "Direct investigation of the reorientational dynamics of A-site cations in 2D organic-inorganic hybrid perovskite by solid-state NMR," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Alessandro Cannavale & Francesco Martellotta & Francesco Fiorito & Ubaldo Ayr, 2020. "The Challenge for Building Integration of Highly Transparent Photovoltaics and Photoelectrochromic Devices," Energies, MDPI, vol. 13(8), pages 1-24, April.
    7. Shunran Li & Xian Xu & Conrad A. Kocoj & Chenyu Zhou & Yanyan Li & Du Chen & Joseph A. Bennett & Sunhao Liu & Lina Quan & Suchismita Sarker & Mingzhao Liu & Diana Y. Qiu & Peijun Guo, 2024. "Large exchange-driven intrinsic circular dichroism of a chiral 2D hybrid perovskite," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Nian Li & Shambhavi Pratap & Volker Körstgens & Sundeep Vema & Lin Song & Suzhe Liang & Anton Davydok & Christina Krywka & Peter Müller-Buschbaum, 2022. "Mapping structure heterogeneities and visualizing moisture degradation of perovskite films with nano-focus WAXS," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Needell, David R. & Phelan, Megan E. & Hartlove, Jason T. & Atwater, Harry A., 2021. "Solar power windows: Connecting scientific advances to market signals," Energy, Elsevier, vol. 219(C).
    10. Zhu, Rui & Wong, Man Sing & You, Linlin & Santi, Paolo & Nichol, Janet & Ho, Hung Chak & Lu, Lin & Ratti, Carlo, 2020. "The effect of urban morphology on the solar capacity of three-dimensional cities," Renewable Energy, Elsevier, vol. 153(C), pages 1111-1126.
    11. Yiyang Gong & Shuai Yue & Yin Liang & Wenna Du & Tieyuan Bian & Chuanxiu Jiang & Xiaotian Bao & Shuai Zhang & Mingzhu Long & Guofu Zhou & Jun Yin & Shibin Deng & Qing Zhang & Bo Wu & Xinfeng Liu, 2024. "Boosting exciton mobility approaching Mott-Ioffe-Regel limit in Ruddlesden−Popper perovskites by anchoring the organic cation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Xixiang Zhu & Liping Peng & Jinpeng Li & Haomiao Yu & Yulin Xie, 2021. "Formation of a Fast Charge Transfer Channel in Quasi-2D Perovskite Solar Cells through External Electric Field Modulation," Energies, MDPI, vol. 14(21), pages 1-10, November.
    13. Mikhail Vasiliev & Mohammad Nur-E-Alam & Kamal Alameh, 2019. "Recent Developments in Solar Energy-Harvesting Technologies for Building Integration and Distributed Energy Generation," Energies, MDPI, vol. 12(6), pages 1-23, March.
    14. Nora Schopp & Viktor V. Brus, 2022. "A Review on the Materials Science and Device Physics of Semitransparent Organic Photovoltaics," Energies, MDPI, vol. 15(13), pages 1-15, June.
    15. Xuan-Kun Li & Jian-Xu Ma & Xiang-Yu Li & Jun-Jie Hu & Chuan-Yang Ding & Feng-Kai Han & Xiao-Min Guo & Xi Tan & Xian-Min Jin, 2024. "High-efficiency reinforcement learning with hybrid architecture photonic integrated circuit," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Weichuan Zhang & Ziyuan Liu & Lizhi Zhang & Hui Wang & Chuanxiu Jiang & Xianxin Wu & Chuanyun Li & Shengli Yue & Rongsheng Yang & Hong Zhang & Jianqi Zhang & Xinfeng Liu & Yuan Zhang & Huiqiong Zhou, 2024. "Ultrastable and efficient slight-interlayer-displacement 2D Dion-Jacobson perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Woongchan Lee & Young Jin Yoo & Jinhong Park & Joo Hwan Ko & Yeong Jae Kim & Huiwon Yun & Dong Hoe Kim & Young Min Song & Dae-Hyeong Kim, 2022. "Perovskite microcells fabricated using swelling-induced crack propagation for colored solar windows," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Dhruba B. Khadka & Yasuhiro Shirai & Masatoshi Yanagida & Hitoshi Ota & Andrey Lyalin & Tetsuya Taketsugu & Kenjiro Miyano, 2024. "Defect passivation in methylammonium/bromine free inverted perovskite solar cells using charge-modulated molecular bonding," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    19. Li, Bo & Ding, Junqi & Wang, Jieqiong & Zhang, Biao & Zhang, Lingxian, 2021. "Key factors affecting the adoption willingness, behavior, and willingness-behavior consistency of farmers regarding photovoltaic agriculture in China," Energy Policy, Elsevier, vol. 149(C).
    20. Mohammad Khairul Basher & Mohammad Nur-E Alam & Kamal Alameh, 2021. "Design, Development, and Characterization of Low Distortion Advanced Semitransparent Photovoltaic Glass for Buildings Applications," Energies, MDPI, vol. 14(13), pages 1-11, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53339-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.