IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v2y2017i11d10.1038_s41560-017-0016-9.html
   My bibliography  Save this article

Emergence of highly transparent photovoltaics for distributed applications

Author

Listed:
  • Christopher J. Traverse

    (Michigan State University)

  • Richa Pandey

    (Ubiquitous Energy, Inc.)

  • Miles C. Barr

    (Ubiquitous Energy, Inc.)

  • Richard R. Lunt

    (Michigan State University
    Michigan State University)

Abstract

Solar energy offers a viable solution to our growing energy need. While adoption of conventional photovoltaics on rooftops and in solar farms has grown rapidly in the last decade, there is still plenty of opportunity for expansion. See-through solar technologies with partial light transmission developed over the past 30 years have initiated methods of integration not possible with conventional modules. The large-scale deployment necessary to offset global energy consumption could be further accelerated by developing fully invisible solar cells that selectively absorb ultraviolet and near-infrared light, allowing many of the surfaces of our built environment to be turned into solar harvesting arrays without impacting the function or aesthetics. Here, we review recent advances in photovoltaics with varying degrees of visible light transparency. We discuss the figures of merit necessary to characterize transparent photovoltaics, and outline the requirements to enable their widespread adoption in buildings, windows, electronic device displays, and automobiles.

Suggested Citation

  • Christopher J. Traverse & Richa Pandey & Miles C. Barr & Richard R. Lunt, 2017. "Emergence of highly transparent photovoltaics for distributed applications," Nature Energy, Nature, vol. 2(11), pages 849-860, November.
  • Handle: RePEc:nat:natene:v:2:y:2017:i:11:d:10.1038_s41560-017-0016-9
    DOI: 10.1038/s41560-017-0016-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-017-0016-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-017-0016-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Refat, Khalid H. & Sajjad, Redwan N., 2020. "Prospect of achieving net-zero energy building with semi-transparent photovoltaics: A device to system level perspective," Applied Energy, Elsevier, vol. 279(C).
    2. Skandalos, Nikolaos & Karamanis, Dimitris, 2021. "An optimization approach to photovoltaic building integration towards low energy buildings in different climate zones," Applied Energy, Elsevier, vol. 295(C).
    3. Zimmerman, Ryan & Panda, Anurag & Bulović, Vladimir, 2020. "Techno-economic assessment and deployment strategies for vertically-mounted photovoltaic panels," Applied Energy, Elsevier, vol. 276(C).
    4. Alessandro Cannavale & Francesco Martellotta & Francesco Fiorito & Ubaldo Ayr, 2020. "The Challenge for Building Integration of Highly Transparent Photovoltaics and Photoelectrochromic Devices," Energies, MDPI, vol. 13(8), pages 1-24, April.
    5. Zhu, Rui & Wong, Man Sing & You, Linlin & Santi, Paolo & Nichol, Janet & Ho, Hung Chak & Lu, Lin & Ratti, Carlo, 2020. "The effect of urban morphology on the solar capacity of three-dimensional cities," Renewable Energy, Elsevier, vol. 153(C), pages 1111-1126.
    6. Woongchan Lee & Young Jin Yoo & Jinhong Park & Joo Hwan Ko & Yeong Jae Kim & Huiwon Yun & Dong Hoe Kim & Young Min Song & Dae-Hyeong Kim, 2022. "Perovskite microcells fabricated using swelling-induced crack propagation for colored solar windows," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Mikhail Vasiliev & Mohammad Nur-E-Alam & Kamal Alameh, 2019. "Recent Developments in Solar Energy-Harvesting Technologies for Building Integration and Distributed Energy Generation," Energies, MDPI, vol. 12(6), pages 1-23, March.
    8. Anctil, Annick & Lee, Eunsang & Lunt, Richard R., 2020. "Net energy and cost benefit of transparent organic solar cells in building-integrated applications," Applied Energy, Elsevier, vol. 261(C).
    9. Li, Bo & Ding, Junqi & Wang, Jieqiong & Zhang, Biao & Zhang, Lingxian, 2021. "Key factors affecting the adoption willingness, behavior, and willingness-behavior consistency of farmers regarding photovoltaic agriculture in China," Energy Policy, Elsevier, vol. 149(C).
    10. Mohammad Khairul Basher & Mohammad Nur-E Alam & Kamal Alameh, 2021. "Design, Development, and Characterization of Low Distortion Advanced Semitransparent Photovoltaic Glass for Buildings Applications," Energies, MDPI, vol. 14(13), pages 1-11, June.
    11. Nora Schopp & Viktor V. Brus, 2022. "A Review on the Materials Science and Device Physics of Semitransparent Organic Photovoltaics," Energies, MDPI, vol. 15(13), pages 1-15, June.
    12. Gorjian, Shiva & Bousi, Erion & Özdemir, Özal Emre & Trommsdorff, Max & Kumar, Nallapaneni Manoj & Anand, Abhishek & Kant, Karunesh & Chopra, Shauhrat S., 2022. "Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    13. Joaquim Romaní & Alba Ramos & Jaume Salom, 2022. "Review of Transparent and Semi-Transparent Building-Integrated Photovoltaics for Fenestration Application Modeling in Building Simulations," Energies, MDPI, vol. 15(9), pages 1-30, April.
    14. Woo, JongRoul & Moon, Sungho & Choi, Hyunhong, 2022. "Economic value and acceptability of advanced solar power systems for multi-unit residential buildings: The case of South Korea," Applied Energy, Elsevier, vol. 324(C).
    15. Needell, David R. & Phelan, Megan E. & Hartlove, Jason T. & Atwater, Harry A., 2021. "Solar power windows: Connecting scientific advances to market signals," Energy, Elsevier, vol. 219(C).
    16. Shubbak, Mahmood H., 2019. "Advances in solar photovoltaics: Technology review and patent trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    17. Li, Zhenpeng & Ma, Tao, 2022. "Theoretic efficiency limit and design criteria of solar photovoltaics with high visual perceptibility," Applied Energy, Elsevier, vol. 324(C).
    18. Parisi, M.L. & Maranghi, S. & Vesce, L. & Sinicropi, A. & Di Carlo, A. & Basosi, R., 2020. "Prospective life cycle assessment of third-generation photovoltaics at the pre-industrial scale: A long-term scenario approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    19. Arias-Rosales, Andrés & LeDuc, Philip R., 2023. "Urban solar harvesting: The importance of diffuse shadows in complex environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:2:y:2017:i:11:d:10.1038_s41560-017-0016-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.