IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53324-z.html
   My bibliography  Save this article

Spin-orbit proximity in MoS2/bilayer graphene heterostructures

Author

Listed:
  • Michele Masseroni

    (ETH Zürich)

  • Mario Gull

    (ETH Zürich)

  • Archisman Panigrahi

    (Massachusetts Institute of Technology)

  • Nils Jacobsen

    (University of Göttingen)

  • Felix Fischer

    (ETH Zürich)

  • Chuyao Tong

    (ETH Zürich)

  • Jonas D. Gerber

    (ETH Zürich)

  • Markus Niese

    (ETH Zürich)

  • Takashi Taniguchi

    (National Institute for Materials Science)

  • Kenji Watanabe

    (National Institute for Materials Science)

  • Leonid Levitov

    (Massachusetts Institute of Technology)

  • Thomas Ihn

    (ETH Zürich)

  • Klaus Ensslin

    (ETH Zürich)

  • Hadrien Duprez

    (ETH Zürich)

Abstract

Van der Waals heterostructures provide a versatile platform for tailoring electronic properties through the integration of two-dimensional materials. Among these combinations, the interaction between bilayer graphene and transition metal dichalcogenides (TMDs) stands out due to its potential for inducing spin–orbit coupling (SOC) in graphene. Future devices concepts require the understanding of the precise nature of SOC in TMD/bilayer graphene heterostructures and its influence on electronic transport phenomena. Here, we experimentally confirm the presence of two distinct types of SOC – Ising (ΔI = 1.55 meV) and Rashba (ΔR = 2.5 meV) – in bilayer graphene when interfaced with molybdenum disulfide. Furthermore, we reveal a non-monotonic trend in conductivity with respect to the electric displacement field at charge neutrality. This phenomenon is ascribed to the existence of single-particle gaps induced by the Ising SOC, which can be closed by a critical displacement field. Our findings also unveil sharp peaks in the magnetoconductivity around the critical displacement field, challenging existing theoretical models.

Suggested Citation

  • Michele Masseroni & Mario Gull & Archisman Panigrahi & Nils Jacobsen & Felix Fischer & Chuyao Tong & Jonas D. Gerber & Markus Niese & Takashi Taniguchi & Kenji Watanabe & Leonid Levitov & Thomas Ihn &, 2024. "Spin-orbit proximity in MoS2/bilayer graphene heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53324-z
    DOI: 10.1038/s41467-024-53324-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53324-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53324-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yiran Zhang & Robert Polski & Alex Thomson & Étienne Lantagne-Hurtubise & Cyprian Lewandowski & Haoxin Zhou & Kenji Watanabe & Takashi Taniguchi & Jason Alicea & Stevan Nadj-Perge, 2023. "Enhanced superconductivity in spin–orbit proximitized bilayer graphene," Nature, Nature, vol. 613(7943), pages 268-273, January.
    2. J. O. Island & X. Cui & C. Lewandowski & J. Y. Khoo & E. M. Spanton & H. Zhou & D. Rhodes & J. C. Hone & T. Taniguchi & K. Watanabe & L. S. Levitov & M. P. Zaletel & A. F. Young, 2019. "Spin–orbit-driven band inversion in bilayer graphene by the van der Waals proximity effect," Nature, Nature, vol. 571(7763), pages 85-89, July.
    3. L. Banszerus & S. Möller & C. Steiner & E. Icking & S. Trellenkamp & F. Lentz & K. Watanabe & T. Taniguchi & C. Volk & C. Stampfer, 2021. "Spin-valley coupling in single-electron bilayer graphene quantum dots," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    4. Lihuan Sun & Louk Rademaker & Diego Mauro & Alessandro Scarfato & Árpád Pásztor & Ignacio Gutiérrez-Lezama & Zhe Wang & Jose Martinez-Castro & Alberto F. Morpurgo & Christoph Renner, 2023. "Determining spin-orbit coupling in graphene by quasiparticle interference imaging," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. A. Avsar & J. Y. Tan & T. Taychatanapat & J. Balakrishnan & G.K.W. Koon & Y. Yeo & J. Lahiri & A. Carvalho & A. S. Rodin & E.C.T. O’Farrell & G. Eda & A. H. Castro Neto & B. Özyilmaz, 2014. "Spin–orbit proximity effect in graphene," Nature Communications, Nature, vol. 5(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hadrien Duprez & Solenn Cances & Andraz Omahen & Michele Masseroni & Max J. Ruckriegel & Christoph Adam & Chuyao Tong & Rebekka Garreis & Jonas D. Gerber & Wister Huang & Lisa Gächter & Kenji Watanabe, 2024. "Spin-valley locked excited states spectroscopy in a one-particle bilayer graphene quantum dot," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qing Rao & Wun-Hao Kang & Hongxia Xue & Ziqing Ye & Xuemeng Feng & Kenji Watanabe & Takashi Taniguchi & Ning Wang & Ming-Hao Liu & Dong-Keun Ki, 2023. "Ballistic transport spectroscopy of spin-orbit-coupled bands in monolayer graphene on WSe2," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Lihuan Sun & Louk Rademaker & Diego Mauro & Alessandro Scarfato & Árpád Pásztor & Ignacio Gutiérrez-Lezama & Zhe Wang & Jose Martinez-Castro & Alberto F. Morpurgo & Christoph Renner, 2023. "Determining spin-orbit coupling in graphene by quasiparticle interference imaging," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Hideki Matsuoka & Tetsuro Habe & Yoshihiro Iwasa & Mikito Koshino & Masaki Nakano, 2022. "Spontaneous spin-valley polarization in NbSe2 at a van der Waals interface," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Xiaozhou Zan & Xiangdong Guo & Aolin Deng & Zhiheng Huang & Le Liu & Fanfan Wu & Yalong Yuan & Jiaojiao Zhao & Yalin Peng & Lu Li & Yangkun Zhang & Xiuzhen Li & Jundong Zhu & Jingwei Dong & Dongxia Sh, 2024. "Electron/infrared-phonon coupling in ABC trilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    5. Jing Ding & Hanxiao Xiang & Wenqiang Zhou & Naitian Liu & Qianmei Chen & Xinjie Fang & Kangyu Wang & Linfeng Wu & Kenji Watanabe & Takashi Taniguchi & Na Xin & Shuigang Xu, 2024. "Engineering band structures of two-dimensional materials with remote moiré ferroelectricity," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Shuichi Iwakiri & Alexandra Mestre-Torà & Elías Portolés & Marieke Visscher & Marta Perego & Giulia Zheng & Takashi Taniguchi & Kenji Watanabe & Manfred Sigrist & Thomas Ihn & Klaus Ensslin, 2024. "Tunable quantum interferometer for correlated moiré electrons," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Shuo Dong & Samuel Beaulieu & Malte Selig & Philipp Rosenzweig & Dominik Christiansen & Tommaso Pincelli & Maciej Dendzik & Jonas D. Ziegler & Julian Maklar & R. Patrick Xian & Alexander Neef & Avaise, 2023. "Observation of ultrafast interfacial Meitner-Auger energy transfer in a Van der Waals heterostructure," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. K. Hecker & L. Banszerus & A. Schäpers & S. Möller & A. Peters & E. Icking & K. Watanabe & T. Taniguchi & C. Volk & C. Stampfer, 2023. "Coherent charge oscillations in a bilayer graphene double quantum dot," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. B. G. Márkus & M. Gmitra & B. Dóra & G. Csősz & T. Fehér & P. Szirmai & B. Náfrádi & V. Zólyomi & L. Forró & J. Fabian & F. Simon, 2023. "Ultralong 100 ns spin relaxation time in graphite at room temperature," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    10. Prasanna Rout & Nikos Papadopoulos & Fernando Peñaranda & Kenji Watanabe & Takashi Taniguchi & Elsa Prada & Pablo San-Jose & Srijit Goswami, 2024. "Supercurrent mediated by helical edge modes in bilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    11. Lukas Powalla & Jonas Kiemle & Elio J. König & Andreas P. Schnyder & Johannes Knolle & Klaus Kern & Alexander Holleitner & Christoph Kastl & Marko Burghard, 2022. "Berry curvature-induced local spin polarisation in gated graphene/WTe2 heterostructures," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Hadrien Duprez & Solenn Cances & Andraz Omahen & Michele Masseroni & Max J. Ruckriegel & Christoph Adam & Chuyao Tong & Rebekka Garreis & Jonas D. Gerber & Wister Huang & Lisa Gächter & Kenji Watanabe, 2024. "Spin-valley locked excited states spectroscopy in a one-particle bilayer graphene quantum dot," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    13. Nikhil Tilak & Michael Altvater & Sheng-Hsiung Hung & Choong-Jae Won & Guohong Li & Taha Kaleem & Sang-Wook Cheong & Chung-Hou Chung & Horng-Tay Jeng & Eva Y. Andrei, 2024. "Proximity induced charge density wave in a graphene/1T-TaS2 heterostructure," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. Jinho Choi & Healin Im & Jung-Moo Heo & Do Wan Kim & Hanjie Jiang & Alexander Stark & Wenhao Shao & Paul M. Zimmerman & Gi Wan Jeon & Jae-Won Jang & Euy Heon Hwang & Sunkook Kim & Dong Hyuk Park & Jin, 2024. "Microsecond triplet emission from organic chromophore-transition metal dichalcogenide hybrids via through-space spin orbit proximity effect," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53324-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.