IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51608-y.html
   My bibliography  Save this article

Proximity induced charge density wave in a graphene/1T-TaS2 heterostructure

Author

Listed:
  • Nikhil Tilak

    (the State University of New Jersey)

  • Michael Altvater

    (the State University of New Jersey)

  • Sheng-Hsiung Hung

    (National Tsing Hua University)

  • Choong-Jae Won

    (Pohang University of Science and Technology)

  • Guohong Li

    (the State University of New Jersey)

  • Taha Kaleem

    (the State University of New Jersey)

  • Sang-Wook Cheong

    (the State University of New Jersey)

  • Chung-Hou Chung

    (National Yang Ming Chiao Tung University
    National Center for Theoretical Sciences
    National Yang Ming Chiao Tung University)

  • Horng-Tay Jeng

    (National Tsing Hua University
    National Center for Theoretical Sciences
    Academia Sinica)

  • Eva Y. Andrei

    (the State University of New Jersey)

Abstract

The proximity-effect, whereby materials in contact appropriate each other’s electronic-properties, is widely used to induce correlated states, such as superconductivity or magnetism, at heterostructure interfaces. Thus far however, demonstrating the existence of proximity-induced charge-density-waves (PI-CDW) proved challenging. This is due to competing effects, such as screening or co-tunneling into the parent material, that obscured its presence. Here we report the observation of a PI-CDW in a graphene layer contacted by a 1T-TaS2 substrate. Using scanning tunneling microscopy (STM) and spectroscopy (STS) together with theoretical-modeling, we show that the coexistence of a CDW with a Mott–gap in 1T-TaS2 coupled with the Dirac-dispersion of electrons in graphene, makes it possible to unambiguously demonstrate the PI-CDW by ruling out alternative interpretations. Furthermore, we find that the PI-CDW is accompanied by a reduction of the Mott gap in 1T-TaS2 and show that the mechanism underlying the PI-CDW is well-described by short-range exchange-interactions that are distinctly different from previously observed proximity effects.

Suggested Citation

  • Nikhil Tilak & Michael Altvater & Sheng-Hsiung Hung & Choong-Jae Won & Guohong Li & Taha Kaleem & Sang-Wook Cheong & Chung-Hou Chung & Horng-Tay Jeng & Eva Y. Andrei, 2024. "Proximity induced charge density wave in a graphene/1T-TaS2 heterostructure," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51608-y
    DOI: 10.1038/s41467-024-51608-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51608-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51608-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. K.C. Rahnejat & C.A. Howard & N.E. Shuttleworth & S.R. Schofield & K. Iwaya & C.F. Hirjibehedin & Ch. Renner & G. Aeppli & M. Ellerby, 2011. "Charge density waves in the graphene sheets of the superconductor CaC6," Nature Communications, Nature, vol. 2(1), pages 1-6, September.
    2. Hubert B. Heersche & Pablo Jarillo-Herrero & Jeroen B. Oostinga & Lieven M. K. Vandersypen & Alberto F. Morpurgo, 2007. "Bipolar supercurrent in graphene," Nature, Nature, vol. 446(7131), pages 56-59, March.
    3. A. K. Geim & I. V. Grigorieva, 2013. "Van der Waals heterostructures," Nature, Nature, vol. 499(7459), pages 419-425, July.
    4. A. Avsar & J. Y. Tan & T. Taychatanapat & J. Balakrishnan & G.K.W. Koon & Y. Yeo & J. Lahiri & A. Carvalho & A. S. Rodin & E.C.T. O’Farrell & G. Eda & A. H. Castro Neto & B. Özyilmaz, 2014. "Spin–orbit proximity effect in graphene," Nature Communications, Nature, vol. 5(1), pages 1-6, December.
    5. Liguo Ma & Cun Ye & Yijun Yu & Xiu Fang Lu & Xiaohai Niu & Sejoong Kim & Donglai Feng & David Tománek & Young-Woo Son & Xian Hui Chen & Yuanbo Zhang, 2016. "A metallic mosaic phase and the origin of Mott-insulating state in 1T-TaS2," Nature Communications, Nature, vol. 7(1), pages 1-8, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hideki Matsuoka & Tetsuro Habe & Yoshihiro Iwasa & Mikito Koshino & Masaki Nakano, 2022. "Spontaneous spin-valley polarization in NbSe2 at a van der Waals interface," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Lutao Li & Junjie Yao & Juntong Zhu & Yuan Chen & Chen Wang & Zhicheng Zhou & Guoxiang Zhao & Sihan Zhang & Ruonan Wang & Jiating Li & Xiangyi Wang & Zheng Lu & Lingbo Xiao & Qiang Zhang & Guifu Zou, 2023. "Colloid driven low supersaturation crystallization for atomically thin Bismuth halide perovskite," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Pandey, Mayank & Deshmukh, Kalim & Raman, Akhila & Asok, Aparna & Appukuttan, Saritha & Suman, G.R., 2024. "Prospects of MXene and graphene for energy storage and conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. E. S. Bozin & M. Abeykoon & S. Conradson & G. Baldinozzi & P. Sutar & D. Mihailovic, 2023. "Crystallization of polarons through charge and spin ordering transitions in 1T-TaS2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Benjamin Carey & Nils Kolja Wessling & Paul Steeger & Robert Schmidt & Steffen Michaelis de Vasconcellos & Rudolf Bratschitsch & Ashish Arora, 2024. "Giant Faraday rotation in atomically thin semiconductors," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Yuri Saida & Thomas Gauthier & Hiroo Suzuki & Satoshi Ohmura & Ryo Shikata & Yui Iwasaki & Godai Noyama & Misaki Kishibuchi & Yuichiro Tanaka & Wataru Yajima & Nicolas Godin & Gaël Privault & Tomoharu, 2024. "Photoinduced dynamics during electronic transfer from narrow to wide bandgap layers in one-dimensional heterostructured materials," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Ying-Xin Ma & Xue-Dong Wang, 2024. "Directional self-assembly of organic vertically superposed nanowires," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Kai Fan & Heng Jin & Bing Huang & Guijing Duan & Rong Yu & Zhen-Yu Liu & Hui-Nan Xia & Li-Si Liu & Yao Zhang & Tao Xie & Qiao-Yin Tang & Gang Chen & Wen-Hao Zhang & F. C. Chen & X. Luo & W. J. Lu & Y., 2024. "Artificial superconducting Kondo lattice in a van der Waals heterostructure," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Cheng Hu & Jiajun Chen & Xianliang Zhou & Yufeng Xie & Xinyue Huang & Zhenghan Wu & Saiqun Ma & Zhichun Zhang & Kunqi Xu & Neng Wan & Yueheng Zhang & Qi Liang & Zhiwen Shi, 2024. "Collapse of carbon nanotubes due to local high-pressure from van der Waals encapsulation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Eli Gerber & Steven B. Torrisi & Sara Shabani & Eric Seewald & Jordan Pack & Jennifer E. Hoffman & Cory R. Dean & Abhay N. Pasupathy & Eun-Ah Kim, 2023. "High-throughput ab initio design of atomic interfaces using InterMatch," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    11. Qiang Gao & Jin Mo Bok & Ping Ai & Jing Liu & Hongtao Yan & Xiangyu Luo & Yongqing Cai & Cong Li & Yang Wang & Chaohui Yin & Hao Chen & Genda Gu & Fengfeng Zhang & Feng Yang & Shenjin Zhang & Qinjun P, 2024. "ARPES detection of superconducting gap sign in unconventional superconductors," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Bohayra Mortazavi & Timon Rabczuk, 2018. "Boron Monochalcogenides; Stable and Strong Two-Dimensional Wide Band-Gap Semiconductors," Energies, MDPI, vol. 11(6), pages 1-10, June.
    13. Yeonghun Lee & Yaoqiao Hu & Xiuyao Lang & Dongwook Kim & Kejun Li & Yuan Ping & Kai-Mei C. Fu & Kyeongjae Cho, 2022. "Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Pei-Yu Huang & Bi-Yi Jiang & Hong-Ji Chen & Jia-Yi Xu & Kang Wang & Cheng-Yi Zhu & Xin-Yan Hu & Dong Li & Liang Zhen & Fei-Chi Zhou & Jing-Kai Qin & Cheng-Yan Xu, 2023. "Neuro-inspired optical sensor array for high-accuracy static image recognition and dynamic trace extraction," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Boxuan Yang & Bibek Bhujel & Daniel G. Chica & Evan J. Telford & Xavier Roy & Fatima Ibrahim & Mairbek Chshiev & Maxen Cosset-Chéneau & Bart J. van Wees, 2024. "Electrostatically controlled spin polarization in Graphene-CrSBr magnetic proximity heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    16. Xiang-Rui Liu & Hanbin Deng & Yuntian Liu & Zhouyi Yin & Congrun Chen & Yu-Peng Zhu & Yichen Yang & Zhicheng Jiang & Zhengtai Liu & Mao Ye & Dawei Shen & Jia-Xin Yin & Kedong Wang & Qihang Liu & Yue Z, 2023. "Spectroscopic signature of obstructed surface states in SrIn2P2," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    17. Xinrui Yang & Lu Han & Hongkai Ning & Shaoqing Xu & Bo Hao & Yi-Chi Li & Taotao Li & Yuan Gao & Shengjun Yan & Yueying Li & Chenyi Gu & Weisheng Li & Zhengbin Gu & Yingzhuo Lun & Yi Shi & Jian Zhou & , 2024. "Ultralow-pressure-driven polarization switching in ferroelectric membranes," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    18. Lihuan Sun & Louk Rademaker & Diego Mauro & Alessandro Scarfato & Árpád Pásztor & Ignacio Gutiérrez-Lezama & Zhe Wang & Jose Martinez-Castro & Alberto F. Morpurgo & Christoph Renner, 2023. "Determining spin-orbit coupling in graphene by quasiparticle interference imaging," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Nikhil Mathur & Arunabh Mukherjee & Xingyu Gao & Jialun Luo & Brendan A. McCullian & Tongcang Li & A. Nick Vamivakas & Gregory D. Fuchs, 2022. "Excited-state spin-resonance spectroscopy of V $${}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$ B − defect centers in hexagonal boron nitride," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    20. Jed Kistner-Morris & Ao Shi & Erfu Liu & Trevor Arp & Farima Farahmand & Takashi Taniguchi & Kenji Watanabe & Vivek Aji & Chun Hung Lui & Nathaniel Gabor, 2024. "Electric-field tunable Type-I to Type-II band alignment transition in MoSe2/WS2 heterobilayers," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51608-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.