IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54067-7.html
   My bibliography  Save this article

OCTOPUS: operation control system for task optimization and job parallelization via a user-optimal scheduler

Author

Listed:
  • Hyuk Jun Yoo

    (Korea Institute of Science and Technology
    Korea University)

  • Kwan-Young Lee

    (Korea University)

  • Donghun Kim

    (Korea Institute of Science and Technology)

  • Sang Soo Han

    (Korea Institute of Science and Technology)

Abstract

The material acceleration platform, empowered by robotics and artificial intelligence, is a transformative approach for expediting material discovery processes across diverse domains. However, the development of an operating system for material acceleration platform faces challenges in simultaneously managing diverse experiments from multiple users. Specifically, when it is utilized by multiple users, the overlapping challenges of experimental modules or devices can lead to inefficiencies in both resource utilization and safety hazards. To overcome these challenges, we present an operation control system for material acceleration platform, namely, OCTOPUS, which is an acronym for operation control system for task optimization and job parallelization via a user-optimal scheduler. OCTOPUS streamlines experiment scheduling and optimizes resource utilization through integrating its interface node, master node and module nodes. Leveraging process modularization and a network protocol, OCTOPUS ensures the homogeneity, scalability, safety and versatility of the platform. In addition, OCTOPUS embodies a user-optimal scheduler. Job parallelization and task optimization techniques mitigate delays and safety hazards within realistic operational environments, while the closed-packing schedule algorithm efficiently executes multiple jobs with minimal resource waste. Copilot of OCTOPUS is developed to promote the reusability of OCTOPUS for potential users with their own sets of lab resources, which substantially simplifies the process of code generation and customization through GPT recommendations and client feedback. This work offers a solution to the challenges encountered within the platform accessed by multiple users, and thereby will facilitate its widespread adoption in material development processes.

Suggested Citation

  • Hyuk Jun Yoo & Kwan-Young Lee & Donghun Kim & Sang Soo Han, 2024. "OCTOPUS: operation control system for task optimization and job parallelization via a user-optimal scheduler," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54067-7
    DOI: 10.1038/s41467-024-54067-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54067-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54067-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jarosław M. Granda & Liva Donina & Vincenza Dragone & De-Liang Long & Leroy Cronin, 2018. "Publisher Correction: Controlling an organic synthesis robot with machine learning to search for new reactivity," Nature, Nature, vol. 562(7728), pages 26-26, October.
    2. Benjamin P. MacLeod & Fraser G. L. Parlane & Connor C. Rupnow & Kevan E. Dettelbach & Michael S. Elliott & Thomas D. Morrissey & Ted H. Haley & Oleksii Proskurin & Michael B. Rooney & Nina Taherimakhs, 2022. "A self-driving laboratory advances the Pareto front for material properties," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Jarosław M. Granda & Liva Donina & Vincenza Dragone & De-Liang Long & Leroy Cronin, 2018. "Controlling an organic synthesis robot with machine learning to search for new reactivity," Nature, Nature, vol. 559(7714), pages 377-381, July.
    4. Ramin Skibba, 2018. "Virtual reality comes of age," Nature, Nature, vol. 553(7689), pages 402-403, January.
    5. Benjamin Burger & Phillip M. Maffettone & Vladimir V. Gusev & Catherine M. Aitchison & Yang Bai & Xiaoyan Wang & Xiaobo Li & Ben M. Alston & Buyi Li & Rob Clowes & Nicola Rankin & Brandon Harris & Rei, 2020. "A mobile robotic chemist," Nature, Nature, vol. 583(7815), pages 237-241, July.
    6. David Matthews, 2018. "Virtual-reality applications give science a new dimension," Nature, Nature, vol. 557(7703), pages 127-128, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yifan Xie & Shuo Feng & Linxiao Deng & Aoran Cai & Liyu Gan & Zifan Jiang & Peng Yang & Guilin Ye & Zaiqing Liu & Li Wen & Qing Zhu & Wanjun Zhang & Zhanpeng Zhang & Jiahe Li & Zeyu Feng & Chutian Zha, 2023. "Inverse design of chiral functional films by a robotic AI-guided system," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Zi-Jing Zhang & Shu-Wen Li & João C. A. Oliveira & Yanjun Li & Xinran Chen & Shuo-Qing Zhang & Li-Cheng Xu & Torben Rogge & Xin Hong & Lutz Ackermann, 2023. "Data-driven design of new chiral carboxylic acid for construction of indoles with C-central and C–N axial chirality via cobalt catalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Hongyuan Sheng & Jingwen Sun & Oliver Rodríguez & Benjamin B. Hoar & Weitong Zhang & Danlei Xiang & Tianhua Tang & Avijit Hazra & Daniel S. Min & Abigail G. Doyle & Matthew S. Sigman & Cyrille Costent, 2024. "Autonomous closed-loop mechanistic investigation of molecular electrochemistry via automation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Jia-Min Lu & Hui-Feng Wang & Qi-Hang Guo & Jian-Wei Wang & Tong-Tong Li & Ke-Xin Chen & Meng-Ting Zhang & Jian-Bo Chen & Qian-Nuan Shi & Yi Huang & Shao-Wen Shi & Guang-Yong Chen & Jian-Zhang Pan & Zh, 2024. "Roboticized AI-assisted microfluidic photocatalytic synthesis and screening up to 10,000 reactions per day," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Amanda A. Volk & Robert W. Epps & Daniel T. Yonemoto & Benjamin S. Masters & Felix N. Castellano & Kristofer G. Reyes & Milad Abolhasani, 2023. "AlphaFlow: autonomous discovery and optimization of multi-step chemistry using a self-driven fluidic lab guided by reinforcement learning," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Adarsh Dave & Jared Mitchell & Sven Burke & Hongyi Lin & Jay Whitacre & Venkatasubramanian Viswanathan, 2022. "Autonomous optimization of non-aqueous Li-ion battery electrolytes via robotic experimentation and machine learning coupling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Yuan, Xiangzhou & Wang, Junyao & Deng, Shuai & Suvarna, Manu & Wang, Xiaonan & Zhang, Wei & Hamilton, Sara Triana & Alahmed, Ammar & Jamal, Aqil & Park, Ah-Hyung Alissa & Bi, Xiaotao & Ok, Yong Sik, 2022. "Recent advancements in sustainable upcycling of solid waste into porous carbons for carbon dioxide capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    8. Snehi Shrestha & Kieran James Barvenik & Tianle Chen & Haochen Yang & Yang Li & Meera Muthachi Kesavan & Joshua M. Little & Hayden C. Whitley & Zi Teng & Yaguang Luo & Eleonora Tubaldi & Po-Yen Chen, 2024. "Machine intelligence accelerated design of conductive MXene aerogels with programmable properties," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Susan Erikson, 2021. "COVID‐Apps: Misdirecting Public Health Attention in a Pandemic," Global Policy, London School of Economics and Political Science, vol. 12(S6), pages 97-100, July.
    10. Alexander E. Siemenn & Eunice Aissi & Fang Sheng & Armi Tiihonen & Hamide Kavak & Basita Das & Tonio Buonassisi, 2024. "Using scalable computer vision to automate high-throughput semiconductor characterization," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Jiyu Cui & Fang Wu & Wen Zhang & Lifeng Yang & Jianbo Hu & Yin Fang & Peng Ye & Qiang Zhang & Xian Suo & Yiming Mo & Xili Cui & Huajun Chen & Huabin Xing, 2023. "Direct prediction of gas adsorption via spatial atom interaction learning," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Bin Ouyang & Yan Zeng, 2024. "The rise of high-entropy battery materials," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
    13. Wenhao Gao & Priyanka Raghavan & Connor W. Coley, 2022. "Autonomous platforms for data-driven organic synthesis," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    14. Hao Xu & Jinglong Lin & Dongxiao Zhang & Fanyang Mo, 2023. "Retention time prediction for chromatographic enantioseparation by quantile geometry-enhanced graph neural network," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    15. Benjamin P. MacLeod & Fraser G. L. Parlane & Connor C. Rupnow & Kevan E. Dettelbach & Michael S. Elliott & Thomas D. Morrissey & Ted H. Haley & Oleksii Proskurin & Michael B. Rooney & Nina Taherimakhs, 2022. "A self-driving laboratory advances the Pareto front for material properties," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. de Regt, Anouk & Barnes, Stuart J. & Plangger, Kirk, 2020. "The virtual reality value chain," Business Horizons, Elsevier, vol. 63(6), pages 737-748.
    17. Xi Zhang & Te Zhang & Xin Wei & Zhanpeng Xiao & Weiwen Zhang, 2024. "Reducing potential dual-use risks in synthetic biology laboratory research: a dynamic model of analysis," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.
    18. Jan Durrer & Prajwal Agrawal & Ali Ozgul & Stephan C. F. Neuhauss & Nitesh Nama & Daniel Ahmed, 2022. "A robot-assisted acoustofluidic end effector," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    19. Saugat Kandel & Tao Zhou & Anakha V. Babu & Zichao Di & Xinxin Li & Xuedan Ma & Martin Holt & Antonino Miceli & Charudatta Phatak & Mathew J. Cherukara, 2023. "Demonstration of an AI-driven workflow for autonomous high-resolution scanning microscopy," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Yiyue Luo & Chao Liu & Young Joong Lee & Joseph DelPreto & Kui Wu & Michael Foshey & Daniela Rus & Tomás Palacios & Yunzhu Li & Antonio Torralba & Wojciech Matusik, 2024. "Adaptive tactile interaction transfer via digitally embroidered smart gloves," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54067-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.