IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53054-2.html
   My bibliography  Save this article

Interference length reveals regularity of crossover placement across species

Author

Listed:
  • Marcel Ernst

    (Max Planck Institute for Dynamics and Self-Organization
    Institute for the Dynamics of Complex Systems)

  • Raphael Mercier

    (Max Planck Institute for Plant Breeding Research)

  • David Zwicker

    (Max Planck Institute for Dynamics and Self-Organization)

Abstract

Crossover interference is a phenomenon that affects the number and positioning of crossovers in meiosis and thus affects genetic diversity and chromosome segregation. Yet, the underlying mechanism is not fully understood, partly because quantification is difficult. To overcome this challenge, we introduce the interference length Lint that quantifies changes in crossover patterning due to interference. We show that it faithfully captures known aspects of crossover interference and provides superior statistical power over previous measures such as the interference distance and the gamma shape parameter. We apply our analysis to empirical data and unveil a similar behavior of Lint across species, which hints at a common mechanism. A recently proposed coarsening model generally captures these aspects, providing a unified view of crossover interference. Consequently, Lint facilitates model refinements and general comparisons between alternative models of crossover interference.

Suggested Citation

  • Marcel Ernst & Raphael Mercier & David Zwicker, 2024. "Interference length reveals regularity of crossover placement across species," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53054-2
    DOI: 10.1038/s41467-024-53054-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53054-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53054-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stéphanie Durand & Qichao Lian & Juli Jing & Marcel Ernst & Mathilde Grelon & David Zwicker & Raphael Mercier, 2022. "Joint control of meiotic crossover patterning by the synaptonemal complex and HEI10 dosage," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Eugenio Mancera & Richard Bourgon & Alessandro Brozzi & Wolfgang Huber & Lars M. Steinmetz, 2008. "High-resolution mapping of meiotic crossovers and non-crossovers in yeast," Nature, Nature, vol. 454(7203), pages 479-485, July.
    3. Liangran Zhang & Shunxin Wang & Shen Yin & Soogil Hong & Keun P. Kim & Nancy Kleckner, 2014. "Topoisomerase II mediates meiotic crossover interference," Nature, Nature, vol. 511(7511), pages 551-556, July.
    4. Chris Morgan & John A. Fozard & Matthew Hartley & Ian R. Henderson & Kirsten Bomblies & Martin Howard, 2021. "Diffusion-mediated HEI10 coarsening can explain meiotic crossover positioning in Arabidopsis," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. Avery Davis Bell & Curtis J. Mello & James Nemesh & Sara A. Brumbaugh & Alec Wysoker & Steven A. McCarroll, 2020. "Insights into variation in meiosis from 31,228 human sperm genomes," Nature, Nature, vol. 583(7815), pages 259-264, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stuart D. Desjardins & James Simmonds & Inna Guterman & Kostya Kanyuka & Amanda J. Burridge & Andrew J. Tock & Eugenio Sanchez-Moran & F. Chris H. Franklin & Ian R. Henderson & Keith J. Edwards & Cris, 2022. "FANCM promotes class I interfering crossovers and suppresses class II non-interfering crossovers in wheat meiosis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Julia Dluzewska & Wojciech Dziegielewski & Maja Szymanska-Lejman & Monika Gazecka & Ian R. Henderson & James D. Higgins & Piotr A. Ziolkowski, 2023. "MSH2 stimulates interfering and inhibits non-interfering crossovers in response to genetic polymorphism," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Simone Mozzachiodi & Lorenzo Tattini & Agnes Llored & Agurtzane Irizar & Neža Škofljanc & Melania D’Angiolo & Matteo De Chiara & Benjamin P. Barré & Jia-Xing Yue & Angela Lutazi & Sophie Loeillet & Ra, 2021. "Aborting meiosis allows recombination in sterile diploid yeast hybrids," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    4. Taikui Zhang & Weichen Huang & Lin Zhang & De-Zhu Li & Ji Qi & Hong Ma, 2024. "Phylogenomic profiles of whole-genome duplications in Poaceae and landscape of differential duplicate retention and losses among major Poaceae lineages," Nature Communications, Nature, vol. 15(1), pages 1-27, December.
    5. Cerys E. Currie & Emma Ford & Lucy Benham Whyte & Deborah M. Taylor & Bettina P. Mihalas & Muriel Erent & Adele L. Marston & Geraldine M. Hartshorne & Andrew D. McAinsh, 2022. "The first mitotic division of human embryos is highly error prone," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Wu Zuo & Guangming Chen & Zhimei Gao & Shuai Li & Yanyan Chen & Chenhui Huang & Juan Chen & Zhengjun Chen & Ming Lei & Qian Bian, 2021. "Stage-resolved Hi-C analyses reveal meiotic chromosome organizational features influencing homolog alignment," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    7. Stéphanie Durand & Qichao Lian & Juli Jing & Marcel Ernst & Mathilde Grelon & David Zwicker & Raphael Mercier, 2022. "Joint control of meiotic crossover patterning by the synaptonemal complex and HEI10 dosage," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Maja Szymanska-Lejman & Wojciech Dziegielewski & Julia Dluzewska & Nadia Kbiri & Anna Bieluszewska & R. Scott Poethig & Piotr A. Ziolkowski, 2023. "The effect of DNA polymorphisms and natural variation on crossover hotspot activity in Arabidopsis hybrids," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Qichao Lian & Victor Solier & Birgit Walkemeier & Stéphanie Durand & Bruno Huettel & Korbinian Schneeberger & Raphael Mercier, 2022. "The megabase-scale crossover landscape is largely independent of sequence divergence," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53054-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.