IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42511-z.html
   My bibliography  Save this article

MSH2 stimulates interfering and inhibits non-interfering crossovers in response to genetic polymorphism

Author

Listed:
  • Julia Dluzewska

    (Adam Mickiewicz University)

  • Wojciech Dziegielewski

    (Adam Mickiewicz University)

  • Maja Szymanska-Lejman

    (Adam Mickiewicz University)

  • Monika Gazecka

    (Adam Mickiewicz University
    Polish Academy of Sciences)

  • Ian R. Henderson

    (University of Cambridge)

  • James D. Higgins

    (University of Leicester)

  • Piotr A. Ziolkowski

    (Adam Mickiewicz University)

Abstract

Meiotic crossovers can be formed through the interfering pathway, in which one crossover prevents another from forming nearby, or by an independent non-interfering pathway. In Arabidopsis, local sequence polymorphism between homologs can stimulate interfering crossovers in a MSH2-dependent manner. To understand how MSH2 regulates crossovers formed by the two pathways, we combined Arabidopsis mutants that elevate non-interfering crossovers with msh2 mutants. We demonstrate that MSH2 blocks non-interfering crossovers at polymorphic loci, which is the opposite effect to interfering crossovers. We also observe MSH2-independent crossover inhibition at highly polymorphic sites. We measure recombination along the chromosome arms in lines differing in patterns of heterozygosity and observe a MSH2-dependent crossover increase at the boundaries between heterozygous and homozygous regions. Here, we show that MSH2 is a master regulator of meiotic DSB repair in Arabidopsis, with antagonistic effects on interfering and non-interfering crossovers, which shapes the crossover landscape in relation to interhomolog polymorphism.

Suggested Citation

  • Julia Dluzewska & Wojciech Dziegielewski & Maja Szymanska-Lejman & Monika Gazecka & Ian R. Henderson & James D. Higgins & Piotr A. Ziolkowski, 2023. "MSH2 stimulates interfering and inhibits non-interfering crossovers in response to genetic polymorphism," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42511-z
    DOI: 10.1038/s41467-023-42511-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42511-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42511-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stéphanie Durand & Qichao Lian & Juli Jing & Marcel Ernst & Mathilde Grelon & David Zwicker & Raphael Mercier, 2022. "Joint control of meiotic crossover patterning by the synaptonemal complex and HEI10 dosage," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Qichao Lian & Victor Solier & Birgit Walkemeier & Stéphanie Durand & Bruno Huettel & Korbinian Schneeberger & Raphael Mercier, 2022. "The megabase-scale crossover landscape is largely independent of sequence divergence," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Chris Morgan & John A. Fozard & Matthew Hartley & Ian R. Henderson & Kirsten Bomblies & Martin Howard, 2021. "Diffusion-mediated HEI10 coarsening can explain meiotic crossover positioning in Arabidopsis," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Penny M. A. Kianian & Minghui Wang & Kristin Simons & Farhad Ghavami & Yan He & Stefanie Dukowic-Schulze & Anitha Sundararajan & Qi Sun & Jaroslaw Pillardy & Joann Mudge & Changbin Chen & Shahryar F. , 2018. "High-resolution crossover mapping reveals similarities and differences of male and female recombination in maize," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    5. Stuart D. Desjardins & James Simmonds & Inna Guterman & Kostya Kanyuka & Amanda J. Burridge & Andrew J. Tock & Eugenio Sanchez-Moran & F. Chris H. Franklin & Ian R. Henderson & Keith J. Edwards & Cris, 2022. "FANCM promotes class I interfering crossovers and suppresses class II non-interfering crossovers in wheat meiosis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Maja Szymanska-Lejman & Wojciech Dziegielewski & Julia Dluzewska & Nadia Kbiri & Anna Bieluszewska & R. Scott Poethig & Piotr A. Ziolkowski, 2023. "The effect of DNA polymorphisms and natural variation on crossover hotspot activity in Arabidopsis hybrids," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Tomasz Bieluszewski & Weronika Sura & Wojciech Dziegielewski & Anna Bieluszewska & Catherine Lachance & Michał Kabza & Maja Szymanska-Lejman & Mateusz Abram & Piotr Wlodzimierz & Nancy Winne & Geert J, 2022. "NuA4 and H2A.Z control environmental responses and autotrophic growth in Arabidopsis," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maja Szymanska-Lejman & Wojciech Dziegielewski & Julia Dluzewska & Nadia Kbiri & Anna Bieluszewska & R. Scott Poethig & Piotr A. Ziolkowski, 2023. "The effect of DNA polymorphisms and natural variation on crossover hotspot activity in Arabidopsis hybrids," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Stéphanie Durand & Qichao Lian & Juli Jing & Marcel Ernst & Mathilde Grelon & David Zwicker & Raphael Mercier, 2022. "Joint control of meiotic crossover patterning by the synaptonemal complex and HEI10 dosage," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Marcel Ernst & Raphael Mercier & David Zwicker, 2024. "Interference length reveals regularity of crossover placement across species," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Stuart D. Desjardins & James Simmonds & Inna Guterman & Kostya Kanyuka & Amanda J. Burridge & Andrew J. Tock & Eugenio Sanchez-Moran & F. Chris H. Franklin & Ian R. Henderson & Keith J. Edwards & Cris, 2022. "FANCM promotes class I interfering crossovers and suppresses class II non-interfering crossovers in wheat meiosis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Qichao Lian & Victor Solier & Birgit Walkemeier & Stéphanie Durand & Bruno Huettel & Korbinian Schneeberger & Raphael Mercier, 2022. "The megabase-scale crossover landscape is largely independent of sequence divergence," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Ben Liao & You-Huang Xiang & Yan Li & Kai-Yang Yang & Jun-Xiang Shan & Wang-Wei Ye & Nai-Qian Dong & Yi Kan & Yi-Bing Yang & Huai-Yu Zhao & Hong-Xiao Yu & Zi-Qi Lu & Yan Zhao & Qiang Zhao & Dongling G, 2024. "Dysfunction of duplicated pair rice histone acetyltransferases causes segregation distortion and an interspecific reproductive barrier," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42511-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.