IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52906-1.html
   My bibliography  Save this article

Complex transcriptional regulations of a hyperparasitic quadripartite system in giant viruses infecting protists

Author

Listed:
  • Alexandra Bessenay

    (IOM)

  • Hugo Bisio

    (IOM)

  • Lucid Belmudes

    (FR2048)

  • Yohann Couté

    (FR2048)

  • Lionel Bertaux

    (IOM
    IM2B)

  • Jean-Michel Claverie

    (IOM)

  • Chantal Abergel

    (IOM)

  • Sandra Jeudy

    (IOM)

  • Matthieu Legendre

    (IOM)

Abstract

Hyperparasitism is a common pattern in nature that is not limited to cellular organisms. Giant viruses infecting protists can be hyperparasitized by smaller ones named virophages. In addition, both may carry episomal DNA molecules known as transpovirons in their particles. They all share transcriptional regulatory elements that dictate the expression of their genes within viral factories built by giant viruses in the host cytoplasm. This suggests the existence of interactions between their respective transcriptional networks. Here we investigated Acanthamoeba castellanii cells infected by a giant virus (megavirus chilensis), and coinfected with a virophage (zamilon vitis) and/or a transpoviron (megavirus vitis transpoviron). Infectious cycles were monitored through time-course RNA sequencing to decipher the transcriptional program of each partner and its impact on the gene expression of the others. We found highly diverse transcriptional responses. While the giant virus drastically reshaped the host cell transcriptome, the transpoviron had no effect on the gene expression of any of the players. In contrast, the virophage strongly modified the giant virus gene expression, albeit transiently, without altering the protein composition of mature viral particles. The virophage also induced the overexpression of transpoviron genes, likely through the indirect upregulation of giant virus-encoded transcription factors. Together, these analyses document the intricated transcriptionally regulated networks taking place in the infected cell.

Suggested Citation

  • Alexandra Bessenay & Hugo Bisio & Lucid Belmudes & Yohann Couté & Lionel Bertaux & Jean-Michel Claverie & Chantal Abergel & Sandra Jeudy & Matthieu Legendre, 2024. "Complex transcriptional regulations of a hyperparasitic quadripartite system in giant viruses infecting protists," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52906-1
    DOI: 10.1038/s41467-024-52906-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52906-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52906-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sandra Jeudy & Sofia Rigou & Jean-Marie Alempic & Jean-Michel Claverie & Chantal Abergel & Matthieu Legendre, 2020. "The DNA methylation landscape of giant viruses," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    2. Sofia Rigou & Sébastien Santini & Chantal Abergel & Jean-Michel Claverie & Matthieu Legendre, 2022. "Past and present giant viruses diversity explored through permafrost metagenomics," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Mohammad Moniruzzaman & Carolina A. Martinez-Gutierrez & Alaina R. Weinheimer & Frank O. Aylward, 2020. "Dynamic genome evolution and complex virocell metabolism of globally-distributed giant viruses," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    4. Simon Roux & Leong-Keat Chan & Rob Egan & Rex R. Malmstrom & Katherine D. McMahon & Matthew B. Sullivan, 2017. "Ecogenomics of virophages and their giant virus hosts assessed through time series metagenomics," Nature Communications, Nature, vol. 8(1), pages 1-12, December.
    5. Matthias G. Fischer & Thomas Hackl, 2016. "Host genome integration and giant virus-induced reactivation of the virophage mavirus," Nature, Nature, vol. 540(7632), pages 288-291, December.
    6. Hugo Bisio & Matthieu Legendre & Claire Giry & Nadege Philippe & Jean-Marie Alempic & Sandra Jeudy & Chantal Abergel, 2023. "Evolution of giant pandoravirus revealed by CRISPR/Cas9," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Bernard La Scola & Christelle Desnues & Isabelle Pagnier & Catherine Robert & Lina Barrassi & Ghislain Fournous & Michèle Merchat & Marie Suzan-Monti & Patrick Forterre & Eugene Koonin & Didier Raoult, 2008. "The virophage as a unique parasite of the giant mimivirus," Nature, Nature, vol. 455(7209), pages 100-104, September.
    8. Frederik Schulz & Lauren Alteio & Danielle Goudeau & Elizabeth M. Ryan & Feiqiao B. Yu & Rex R. Malmstrom & Jeffrey Blanchard & Tanja Woyke, 2018. "Hidden diversity of soil giant viruses," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    9. Frederik Schulz & Simon Roux & David Paez-Espino & Sean Jungbluth & David A. Walsh & Vincent J. Denef & Katherine D. McMahon & Konstantinos T. Konstantinidis & Emiley A. Eloe-Fadrosh & Nikos C. Kyrpid, 2020. "Giant virus diversity and host interactions through global metagenomics," Nature, Nature, vol. 578(7795), pages 432-436, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sofia Rigou & Sébastien Santini & Chantal Abergel & Jean-Michel Claverie & Matthieu Legendre, 2022. "Past and present giant viruses diversity explored through permafrost metagenomics," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Patrick Arthofer & Florian Panhölzl & Vincent Delafont & Alban Hay & Siegfried Reipert & Norbert Cyran & Stefanie Wienkoop & Anouk Willemsen & Ines Sifaoui & Iñigo Arberas-Jiménez & Frederik Schulz & , 2024. "A giant virus infecting the amoeboflagellate Naegleria," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Xinzhu Yi & Jie-Liang Liang & Ping Wen & Pu Jia & Shi-wei Feng & Shen-yan Liu & Yuan-yue Zhuang & Yu-qian Guo & Jing-li Lu & Sheng-ji Zhong & Bin Liao & Zhang Wang & Wen-sheng Shu & Jin-tian Li, 2024. "Giant viruses as reservoirs of antibiotic resistance genes," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Lingjie Meng & Tom O. Delmont & Morgan Gaïa & Eric Pelletier & Antonio Fernàndez-Guerra & Samuel Chaffron & Russell Y. Neches & Junyi Wu & Hiroto Kaneko & Hisashi Endo & Hiroyuki Ogata, 2023. "Genomic adaptation of giant viruses in polar oceans," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Lulu Li & Hehong Zhang & Zihang Yang & Chen Wang & Shanshan Li & Chen Cao & Tongsong Yao & Zhongyan Wei & Yanjun Li & Jianping Chen & Zongtao Sun, 2022. "Independently evolved viral effectors convergently suppress DELLA protein SLR1-mediated broad-spectrum antiviral immunity in rice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    6. Jianhua Wang & Guan-Zhu Han, 2023. "Genome mining shows that retroviruses are pervasively invading vertebrate genomes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Asher Leeks & Stuart A. West & Melanie Ghoul, 2021. "The evolution of cheating in viruses," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    8. Hugo Bisio & Matthieu Legendre & Claire Giry & Nadege Philippe & Jean-Marie Alempic & Sandra Jeudy & Chantal Abergel, 2023. "Evolution of giant pandoravirus revealed by CRISPR/Cas9," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. M. S. Clark & J. I. Hoffman & L. S. Peck & L. Bargelloni & D. Gande & C. Havermans & B. Meyer & T. Patarnello & T. Phillips & K. R. Stoof-Leichsenring & D. L. J. Vendrami & A. Beck & G. Collins & M. W, 2023. "Multi-omics for studying and understanding polar life," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Shaojun Pan & Chengkai Zhu & Xing-Ming Zhao & Luis Pedro Coelho, 2022. "A deep siamese neural network improves metagenome-assembled genomes in microbiome datasets across different environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Hanpeng Liao & Chen Liu & Shungui Zhou & Chunqin Liu & David J. Eldridge & Chaofan Ai & Steven W. Wilhelm & Brajesh K. Singh & Xiaolong Liang & Mark Radosevich & Qiu-e Yang & Xiang Tang & Zhong Wei & , 2024. "Prophage-encoded antibiotic resistance genes are enriched in human-impacted environments," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Mengzhi Ji & Jiayin Zhou & Yan Li & Kai Ma & Wen Song & Yueyue Li & Jizhong Zhou & Qichao Tu, 2024. "Biodiversity of mudflat intertidal viromes along the Chinese coasts," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Ana-Sofia Eria-Oliveira & Mathilde Folacci & Anne Amandine Chassot & Sandrine Fedou & Nadine Thézé & Dmitrii Zabelskii & Alexey Alekseev & Ernst Bamberg & Valentin Gordeliy & Guillaume Sandoz & Michel, 2024. "Hijacking of internal calcium dynamics by intracellularly residing viral rhodopsins," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Qianqian Shao & Irina V. Agarkova & Eric A. Noel & David D. Dunigan & Yunshu Liu & Aohan Wang & Mingcheng Guo & Linlin Xie & Xinyue Zhao & Michael G. Rossmann & James L. Etten & Thomas Klose & Qiangli, 2022. "Near-atomic, non-icosahedrally averaged structure of giant virus Paramecium bursaria chlorella virus 1," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Zongzhi Wu & Tang Liu & Qian Chen & Tianyi Chen & Jinyun Hu & Liyu Sun & Bingxue Wang & Wenpeng Li & Jinren Ni, 2024. "Unveiling the unknown viral world in groundwater," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52906-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.