IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-16414-2.html
   My bibliography  Save this article

The DNA methylation landscape of giant viruses

Author

Listed:
  • Sandra Jeudy

    (Aix Marseille Univ., CNRS, IGS, Information Génomique & Structurale (UMR7256), Institut de Microbiologie de la Méditerranée (FR 3489))

  • Sofia Rigou

    (Aix Marseille Univ., CNRS, IGS, Information Génomique & Structurale (UMR7256), Institut de Microbiologie de la Méditerranée (FR 3489))

  • Jean-Marie Alempic

    (Aix Marseille Univ., CNRS, IGS, Information Génomique & Structurale (UMR7256), Institut de Microbiologie de la Méditerranée (FR 3489))

  • Jean-Michel Claverie

    (Aix Marseille Univ., CNRS, IGS, Information Génomique & Structurale (UMR7256), Institut de Microbiologie de la Méditerranée (FR 3489))

  • Chantal Abergel

    (Aix Marseille Univ., CNRS, IGS, Information Génomique & Structurale (UMR7256), Institut de Microbiologie de la Méditerranée (FR 3489))

  • Matthieu Legendre

    (Aix Marseille Univ., CNRS, IGS, Information Génomique & Structurale (UMR7256), Institut de Microbiologie de la Méditerranée (FR 3489))

Abstract

DNA methylation is an important epigenetic mark that contributes to various regulations in all domains of life. Giant viruses are widespread dsDNA viruses with gene contents overlapping the cellular world that also encode DNA methyltransferases. Yet, virtually nothing is known about the methylation of their DNA. Here, we use single-molecule real-time sequencing to study the complete methylome of a large spectrum of giant viruses. We show that DNA methylation is widespread, affecting 2/3 of the tested families, although unevenly distributed. We also identify the corresponding viral methyltransferases and show that they are subject to intricate gene transfers between bacteria, viruses and their eukaryotic host. Most methyltransferases are conserved, functional and under purifying selection, suggesting that they increase the viruses’ fitness. Some virally encoded methyltransferases are also paired with restriction endonucleases forming Restriction-Modification systems. Our data suggest that giant viruses’ methyltransferases are involved in diverse forms of virus-pathogens interactions during coinfections.

Suggested Citation

  • Sandra Jeudy & Sofia Rigou & Jean-Marie Alempic & Jean-Michel Claverie & Chantal Abergel & Matthieu Legendre, 2020. "The DNA methylation landscape of giant viruses," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16414-2
    DOI: 10.1038/s41467-020-16414-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-16414-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-16414-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sofia Rigou & Sébastien Santini & Chantal Abergel & Jean-Michel Claverie & Matthieu Legendre, 2022. "Past and present giant viruses diversity explored through permafrost metagenomics," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Alexandra Bessenay & Hugo Bisio & Lucid Belmudes & Yohann Couté & Lionel Bertaux & Jean-Michel Claverie & Chantal Abergel & Sandra Jeudy & Matthieu Legendre, 2024. "Complex transcriptional regulations of a hyperparasitic quadripartite system in giant viruses infecting protists," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16414-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.