IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-01086-2.html
   My bibliography  Save this article

Ecogenomics of virophages and their giant virus hosts assessed through time series metagenomics

Author

Listed:
  • Simon Roux

    (The Ohio State University
    Department of Energy Joint Genome Institute)

  • Leong-Keat Chan

    (Department of Energy Joint Genome Institute)

  • Rob Egan

    (Department of Energy Joint Genome Institute)

  • Rex R. Malmstrom

    (Department of Energy Joint Genome Institute)

  • Katherine D. McMahon

    (University of Wisconsin-Madison
    University of Wisconsin-Madison)

  • Matthew B. Sullivan

    (The Ohio State University
    The Ohio State University)

Abstract

Virophages are small viruses that co-infect eukaryotic cells alongside giant viruses (Mimiviridae) and hijack their machinery to replicate. While two types of virophages have been isolated, their genomic diversity and ecology remain largely unknown. Here we use time series metagenomics to identify and study the dynamics of 25 uncultivated virophage populations, 17 of which represented by complete or near-complete genomes, in two North American freshwater lakes. Taxonomic analysis suggests that these freshwater virophages represent at least three new candidate genera. Ecologically, virophage populations are repeatedly detected over years and evolutionary stable, yet their distinct abundance profiles and gene content suggest that virophage genera occupy different ecological niches. Co-occurrence analyses reveal 11 virophages strongly associated with uncultivated Mimiviridae, and three associated with eukaryotes among the Dinophyceae, Rhizaria, Alveolata, and Cryptophyceae groups. Together, these findings significantly augment virophage databases, help refine virophage taxonomy, and establish baseline ecological hypotheses and tools to study virophages in nature.

Suggested Citation

  • Simon Roux & Leong-Keat Chan & Rob Egan & Rex R. Malmstrom & Katherine D. McMahon & Matthew B. Sullivan, 2017. "Ecogenomics of virophages and their giant virus hosts assessed through time series metagenomics," Nature Communications, Nature, vol. 8(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01086-2
    DOI: 10.1038/s41467-017-01086-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-01086-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-01086-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sofia Rigou & Sébastien Santini & Chantal Abergel & Jean-Michel Claverie & Matthieu Legendre, 2022. "Past and present giant viruses diversity explored through permafrost metagenomics," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Gonçalo J. Piedade & Max E. Schön & Cédric Lood & Mikhail V. Fofanov & Ella M. Wesdorp & Tristan E. G. Biggs & Lingyi Wu & Henk Bolhuis & Matthias G. Fischer & Natalya Yutin & Bas E. Dutilh & Corina P, 2024. "Seasonal dynamics and diversity of Antarctic marine viruses reveal a novel viral seascape," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Alexandra Bessenay & Hugo Bisio & Lucid Belmudes & Yohann Couté & Lionel Bertaux & Jean-Michel Claverie & Chantal Abergel & Sandra Jeudy & Matthieu Legendre, 2024. "Complex transcriptional regulations of a hyperparasitic quadripartite system in giant viruses infecting protists," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01086-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.