IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52886-2.html
   My bibliography  Save this article

Transcript errors generate amyloid-like proteins in human cells

Author

Listed:
  • Claire S. Chung

    (Leonard Davis School of Gerontology)

  • Yi Kou

    (Molecular and Cellular Biology Department)

  • Sarah J. Shemtov

    (Leonard Davis School of Gerontology)

  • Bert M. Verheijen

    (Leonard Davis School of Gerontology)

  • Ilse Flores

    (Keck School of Medicine)

  • Kayla Love

    (Molecular and Cellular Biology Department)

  • Ashley Dosso

    (Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research)

  • Max A. Thorwald

    (Leonard Davis School of Gerontology)

  • Yuchen Liu

    (Molecular and Cellular Biology Department)

  • Daniel Hicks

    (Leonard Davis School of Gerontology)

  • Yingwo Sun

    (Leonard Davis School of Gerontology)

  • Renaldo G. Toney

    (Leonard Davis School of Gerontology)

  • Lucy Carrillo

    (Leonard Davis School of Gerontology)

  • Megan M. Nguyen

    (Department of Pathology and Laboratory Medicine)

  • Huang Biao

    (Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research)

  • Yuxin Jin

    (Keck School of Medicine)

  • Ashley Michelle Jauregui

    (Keck School of Medicine)

  • Juan Diaz Quiroz

    (Bell Center)

  • Elizabeth Head

    (Department of Pathology and Laboratory Medicine)

  • Darcie L. Moore

    (Department of Neuroscience)

  • Stephen Simpson

    (& Biomedical Sciences)

  • Kelley W. Thomas

    (& Biomedical Sciences)

  • Marcelo P. Coba

    (Keck School of Medicine)

  • Zhongwei Li

    (Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research)

  • Bérénice A. Benayoun

    (Leonard Davis School of Gerontology)

  • Joshua J. C. Rosenthal

    (Bell Center)

  • Scott R. Kennedy

    (Department of Pathology and Laboratory Medicine)

  • Giorgia Quadrato

    (Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research)

  • Jean-Francois Gout

    (Department of Biology)

  • Lin Chen

    (Molecular and Cellular Biology Department)

  • Marc Vermulst

    (Leonard Davis School of Gerontology)

Abstract

Aging is characterized by the accumulation of proteins that display amyloid-like behavior. However, the molecular mechanisms by which these proteins arise remain unclear. Here, we demonstrate that amyloid-like proteins are produced in a variety of human cell types, including stem cells, brain organoids and fully differentiated neurons by mistakes that occur in messenger RNA molecules. Some of these mistakes generate mutant proteins already known to cause disease, while others generate proteins that have not been observed before. Moreover, we show that these mistakes increase when cells are exposed to DNA damage, a major hallmark of human aging. When taken together, these experiments suggest a mechanistic link between the normal aging process and age-related diseases.

Suggested Citation

  • Claire S. Chung & Yi Kou & Sarah J. Shemtov & Bert M. Verheijen & Ilse Flores & Kayla Love & Ashley Dosso & Max A. Thorwald & Yuchen Liu & Daniel Hicks & Yingwo Sun & Renaldo G. Toney & Lucy Carrillo , 2024. "Transcript errors generate amyloid-like proteins in human cells," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52886-2
    DOI: 10.1038/s41467-024-52886-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52886-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52886-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jean Hausser & Avi Mayo & Leeat Keren & Uri Alon, 2019. "Central dogma rates and the trade-off between precision and economy in gene expression," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    2. Cédric Debès & Antonios Papadakis & Sebastian Grönke & Özlem Karalay & Luke S. Tain & Athanasia Mizi & Shuhei Nakamura & Oliver Hahn & Carina Weigelt & Natasa Josipovic & Anne Zirkel & Isabell Brusius, 2023. "Ageing-associated changes in transcriptional elongation influence longevity," Nature, Nature, vol. 616(7958), pages 814-821, April.
    3. Hong Joo Kim & Nam Chul Kim & Yong-Dong Wang & Emily A. Scarborough & Jennifer Moore & Zamia Diaz & Kyle S. MacLea & Brian Freibaum & Songqing Li & Amandine Molliex & Anderson P. Kanagaraj & Robert Ca, 2013. "Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS," Nature, Nature, vol. 495(7442), pages 467-473, March.
    4. Marc Vermulst & Ashley S. Denney & Michael J. Lang & Chao-Wei Hung & Stephanie Moore & M. Arthur Moseley & J. Will Thompson & Victoria Madden & Jacob Gauer & Katie J. Wolfe & Daniel W. Summers & Jenni, 2015. "Correction: Corrigendum: Transcription errors induce proteotoxic stress and shorten cellular lifespan," Nature Communications, Nature, vol. 6(1), pages 1-1, December.
    5. Jianli Tao & Daniel E. Bauer & Roberto Chiarle, 2023. "Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Marc Vermulst & Ashley S. Denney & Michael J. Lang & Chao-Wei Hung & Stephanie Moore & M. Arthur Moseley & J. Will Thompson & Victoria Madden & Jacob Gauer & Katie J. Wolfe & Daniel W. Summers & Jenni, 2015. "Transcription errors induce proteotoxic stress and shorten cellular lifespan," Nature Communications, Nature, vol. 6(1), pages 1-11, November.
    7. Caroline B. Albertin & Sofia Medina-Ruiz & Therese Mitros & Hannah Schmidbaur & Gustavo Sanchez & Z. Yan Wang & Jane Grimwood & Joshua J. C. Rosenthal & Clifton W. Ragsdale & Oleg Simakov & Daniel S. , 2022. "Genome and transcriptome mechanisms driving cephalopod evolution," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claire Chung & Bert M. Verheijen & Zoe Navapanich & Eric G. McGann & Sarah Shemtov & Guan-Ju Lai & Payal Arora & Atif Towheed & Suraiya Haroon & Agnes Holczbauer & Sharon Chang & Zarko Manojlovic & St, 2023. "Evolutionary conservation of the fidelity of transcription," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Andrea Wilderman & Eva D’haene & Machteld Baetens & Tara N. Yankee & Emma Wentworth Winchester & Nicole Glidden & Ellen Roets & Jo Dorpe & Sandra Janssens & Danny E. Miller & Miranda Galey & Kari M. B, 2024. "A distant global control region is essential for normal expression of anterior HOXA genes during mouse and human craniofacial development," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    3. Javier Garcia-Pardo & Andrea Bartolomé-Nafría & Antonio Chaves-Sanjuan & Marcos Gil-Garcia & Cristina Visentin & Martino Bolognesi & Stefano Ricagno & Salvador Ventura, 2023. "Cryo-EM structure of hnRNPDL-2 fibrils, a functional amyloid associated with limb-girdle muscular dystrophy D3," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Ron Baik & M. Kyle Cromer & Steve E. Glenn & Christopher A. Vakulskas & Kay O. Chmielewski & Amanda M. Dudek & William N. Feist & Julia Klermund & Suzette Shipp & Toni Cathomen & Daniel P. Dever & Mat, 2024. "Transient inhibition of 53BP1 increases the frequency of targeted integration in human hematopoietic stem and progenitor cells," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Amir Pozner & Li Li & Shiv Prakash Verma & Shuxin Wang & Jared J. Barrott & Mary L. Nelson & Jamie S. E. Yu & Gian Luca Negri & Shane Colborne & Christopher S. Hughes & Ju-Fen Zhu & Sydney L. Lambert , 2024. "ASPSCR1-TFE3 reprograms transcription by organizing enhancer loops around hexameric VCP/p97," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    6. Mina Farag & Wade M. Borcherds & Anne Bremer & Tanja Mittag & Rohit V. Pappu, 2023. "Phase separation of protein mixtures is driven by the interplay of homotypic and heterotypic interactions," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Kenzui Taniue & Anzu Sugawara & Chao Zeng & Han Han & Xinyue Gao & Yuki Shimoura & Atsuko Nakanishi Ozeki & Rena Onoguchi-Mizutani & Masahide Seki & Yutaka Suzuki & Michiaki Hamada & Nobuyoshi Akimits, 2024. "The MTR4/hnRNPK complex surveils aberrant polyadenylated RNAs with multiple exons," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Hong Joo Kim & Payam Mohassel & Sandra Donkervoort & Lin Guo & Kevin O’Donovan & Maura Coughlin & Xaviere Lornage & Nicola Foulds & Simon R. Hammans & A. Reghan Foley & Charlotte M. Fare & Alice F. Fo, 2022. "Heterozygous frameshift variants in HNRNPA2B1 cause early-onset oculopharyngeal muscular dystrophy," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    9. Raju Roy & Gitartha Das & Ishwarya Achappa Kuttanda & Nupur Bhatter & Purusharth I. Rajyaguru, 2022. "Low complexity RGG-motif sequence is required for Processing body (P-body) disassembly," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Hannah E. Salapa & Patricia A. Thibault & Cole D. Libner & Yulian Ding & Joseph-Patrick W. E. Clarke & Connor Denomy & Catherine Hutchinson & Hashim M. Abidullah & S. Austin Hammond & Landon Pastushok, 2024. "hnRNP A1 dysfunction alters RNA splicing and drives neurodegeneration in multiple sclerosis (MS)," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    11. Tao Wang & Xibin Tian & Han Byeol Kim & Yura Jang & Zhiyuan Huang & Chan Hyun Na & Jiou Wang, 2022. "Intracellular energy controls dynamics of stress-induced ribonucleoprotein granules," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    12. Niklas Korsbo & Henrik Jönsson, 2020. "It’s about time: Analysing simplifying assumptions for modelling multi-step pathways in systems biology," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-29, June.
    13. Isabelle Rose Leo & Luay Aswad & Matthias Stahl & Elena Kunold & Frederik Post & Tom Erkers & Nona Struyf & Georgios Mermelekas & Rubin Narayan Joshi & Eva Gracia-Villacampa & Päivi Östling & Olli P. , 2022. "Integrative multi-omics and drug response profiling of childhood acute lymphoblastic leukemia cell lines," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    14. Keren Lasker & Steven Boeynaems & Vinson Lam & Daniel Scholl & Emma Stainton & Adam Briner & Maarten Jacquemyn & Dirk Daelemans & Ashok Deniz & Elizabeth Villa & Alex S. Holehouse & Aaron D. Gitler & , 2022. "The material properties of a bacterial-derived biomolecular condensate tune biological function in natural and synthetic systems," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52886-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.