IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33079-1.html
   My bibliography  Save this article

Intracellular energy controls dynamics of stress-induced ribonucleoprotein granules

Author

Listed:
  • Tao Wang

    (Johns Hopkins University
    Johns Hopkins University)

  • Xibin Tian

    (Johns Hopkins University
    Johns Hopkins University)

  • Han Byeol Kim

    (Johns Hopkins University)

  • Yura Jang

    (Johns Hopkins University)

  • Zhiyuan Huang

    (Johns Hopkins University
    Johns Hopkins University)

  • Chan Hyun Na

    (Johns Hopkins University)

  • Jiou Wang

    (Johns Hopkins University
    Johns Hopkins University)

Abstract

Energy metabolism and membraneless organelles have been implicated in human diseases including neurodegeneration. How energy deficiency regulates ribonucleoprotein particles such as stress granules (SGs) is still unclear. Here we identified a unique type of granules induced by energy deficiency under physiological conditions and uncovered the mechanisms by which the dynamics of diverse stress-induced granules are regulated. Severe energy deficiency induced the rapid formation of energy deficiency-induced stress granules (eSGs) independently of eIF2α phosphorylation, whereas moderate energy deficiency delayed the clearance of conventional SGs. The formation of eSGs or the clearance of SGs was regulated by the mTOR-4EBP1-eIF4E pathway or eIF4A1, involving assembly of the eIF4F complex or RNA condensation, respectively. In neurons or brain organoids derived from patients carrying the C9orf72 repeat expansion associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), the eSG formation was enhanced, and the clearance of conventional SGs was impaired. These results reveal a critical role for intracellular energy in the regulation of diverse granules and suggest that disruptions in energy-controlled granule dynamics may contribute to the pathogenesis of relevant diseases.

Suggested Citation

  • Tao Wang & Xibin Tian & Han Byeol Kim & Yura Jang & Zhiyuan Huang & Chan Hyun Na & Jiou Wang, 2022. "Intracellular energy controls dynamics of stress-induced ribonucleoprotein granules," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33079-1
    DOI: 10.1038/s41467-022-33079-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33079-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33079-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hong Joo Kim & Nam Chul Kim & Yong-Dong Wang & Emily A. Scarborough & Jennifer Moore & Zamia Diaz & Kyle S. MacLea & Brian Freibaum & Songqing Li & Amandine Molliex & Anderson P. Kanagaraj & Robert Ca, 2013. "Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS," Nature, Nature, vol. 495(7442), pages 467-473, March.
    2. Zhong-Wei Du & Hong Chen & Huisheng Liu & Jianfeng Lu & Kun Qian & CindyTzu-Ling Huang & Xiaofen Zhong & Frank Fan & Su-Chun Zhang, 2015. "Generation and expansion of highly pure motor neuron progenitors from human pluripotent stem cells," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
    3. Maneka Chitiprolu & Chantal Jagow & Veronique Tremblay & Emma Bondy-Chorney & Geneviève Paris & Alexandre Savard & Gareth Palidwor & Francesca A. Barry & Lorne Zinman & Julia Keith & Ekaterina Rogaeva, 2018. "A complex of C9ORF72 and p62 uses arginine methylation to eliminate stress granules by autophagy," Nature Communications, Nature, vol. 9(1), pages 1-18, December.
    4. Lindsay A. Becker & Brenda Huang & Gregor Bieri & Rosanna Ma & David A. Knowles & Paymaan Jafar-Nejad & James Messing & Hong Joo Kim & Armand Soriano & Georg Auburger & Stefan M. Pulst & J. Paul Taylo, 2017. "Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice," Nature, Nature, vol. 544(7650), pages 367-371, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Florian Pernin & Qiao-Ling Cui & Abdulshakour Mohammadnia & Milton G. F. Fernandes & Jeffery A. Hall & Myriam Srour & Roy W. R. Dudley & Stephanie E. J. Zandee & Wendy Klement & Alexandre Prat & Hanna, 2024. "Regulation of stress granule formation in human oligodendrocytes," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Zhong & Chaodong Wang & Dan Zhang & Xiaoli Yao & Quanzhen Zhao & Xusheng Huang & Feng Lin & Chun Xue & Yaqing Wang & Ruojie He & Xu-Ying Li & Qibin Li & Mingbang Wang & Shaoli Zhao & Shabbir Khan , 2024. "PCDHA9 as a candidate gene for amyotrophic lateral sclerosis," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    2. Andrea Wilderman & Eva D’haene & Machteld Baetens & Tara N. Yankee & Emma Wentworth Winchester & Nicole Glidden & Ellen Roets & Jo Dorpe & Sandra Janssens & Danny E. Miller & Miranda Galey & Kari M. B, 2024. "A distant global control region is essential for normal expression of anterior HOXA genes during mouse and human craniofacial development," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    3. Mina Farag & Wade M. Borcherds & Anne Bremer & Tanja Mittag & Rohit V. Pappu, 2023. "Phase separation of protein mixtures is driven by the interplay of homotypic and heterotypic interactions," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Lennart Enders & Marton Siklos & Jan Borggräfe & Stefan Gaussmann & Anna Koren & Monika Malik & Tatjana Tomek & Michael Schuster & Jiří Reiniš & Elisa Hahn & Andrea Rukavina & Andreas Reicher & Tamara, 2023. "Pharmacological perturbation of the phase-separating protein SMNDC1," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Hong Joo Kim & Payam Mohassel & Sandra Donkervoort & Lin Guo & Kevin O’Donovan & Maura Coughlin & Xaviere Lornage & Nicola Foulds & Simon R. Hammans & A. Reghan Foley & Charlotte M. Fare & Alice F. Fo, 2022. "Heterozygous frameshift variants in HNRNPA2B1 cause early-onset oculopharyngeal muscular dystrophy," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. Raju Roy & Gitartha Das & Ishwarya Achappa Kuttanda & Nupur Bhatter & Purusharth I. Rajyaguru, 2022. "Low complexity RGG-motif sequence is required for Processing body (P-body) disassembly," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Javier Garcia-Pardo & Andrea Bartolomé-Nafría & Antonio Chaves-Sanjuan & Marcos Gil-Garcia & Cristina Visentin & Martino Bolognesi & Stefano Ricagno & Salvador Ventura, 2023. "Cryo-EM structure of hnRNPDL-2 fibrils, a functional amyloid associated with limb-girdle muscular dystrophy D3," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Amir Pozner & Li Li & Shiv Prakash Verma & Shuxin Wang & Jared J. Barrott & Mary L. Nelson & Jamie S. E. Yu & Gian Luca Negri & Shane Colborne & Christopher S. Hughes & Ju-Fen Zhu & Sydney L. Lambert , 2024. "ASPSCR1-TFE3 reprograms transcription by organizing enhancer loops around hexameric VCP/p97," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    9. Rebecca San Gil & Dana Pascovici & Juliana Venturato & Heledd Brown-Wright & Prachi Mehta & Lidia Madrid San Martin & Jemma Wu & Wei Luan & Yi Kit Chui & Adekunle T. Bademosi & Shilpa Swaminathan & Se, 2024. "A transient protein folding response targets aggregation in the early phase of TDP-43-mediated neurodegeneration," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    10. M. Alejandra Zeballos C. & Hayden J. Moore & Tyler J. Smith & Jackson E. Powell & Najah S. Ahsan & Sijia Zhang & Thomas Gaj, 2023. "Mitigating a TDP-43 proteinopathy by targeting ataxin-2 using RNA-targeting CRISPR effector proteins," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Hannah E. Salapa & Patricia A. Thibault & Cole D. Libner & Yulian Ding & Joseph-Patrick W. E. Clarke & Connor Denomy & Catherine Hutchinson & Hashim M. Abidullah & S. Austin Hammond & Landon Pastushok, 2024. "hnRNP A1 dysfunction alters RNA splicing and drives neurodegeneration in multiple sclerosis (MS)," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    12. Keren Lasker & Steven Boeynaems & Vinson Lam & Daniel Scholl & Emma Stainton & Adam Briner & Maarten Jacquemyn & Dirk Daelemans & Ashok Deniz & Elizabeth Villa & Alex S. Holehouse & Aaron D. Gitler & , 2022. "The material properties of a bacterial-derived biomolecular condensate tune biological function in natural and synthetic systems," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33079-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.