IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29748-w.html
   My bibliography  Save this article

Genome and transcriptome mechanisms driving cephalopod evolution

Author

Listed:
  • Caroline B. Albertin

    (Marine Biological Laboratory)

  • Sofia Medina-Ruiz

    (University of California)

  • Therese Mitros

    (University of California)

  • Hannah Schmidbaur

    (University of Vienna)

  • Gustavo Sanchez

    (Hiroshima University, Higashi Hiroshima)

  • Z. Yan Wang

    (University of Chicago)

  • Jane Grimwood

    (Hudson Alpha Institute of Biotechnology)

  • Joshua J. C. Rosenthal

    (Marine Biological Laboratory)

  • Clifton W. Ragsdale

    (University of Chicago)

  • Oleg Simakov

    (University of Vienna)

  • Daniel S. Rokhsar

    (University of California
    Okinawa Institute for Science and Technology
    Chan-Zuckerberg BioHub)

Abstract

Cephalopods are known for their large nervous systems, complex behaviors and morphological innovations. To investigate the genomic underpinnings of these features, we assembled the chromosomes of the Boston market squid, Doryteuthis (Loligo) pealeii, and the California two-spot octopus, Octopus bimaculoides, and compared them with those of the Hawaiian bobtail squid, Euprymna scolopes. The genomes of the soft-bodied (coleoid) cephalopods are highly rearranged relative to other extant molluscs, indicating an intense, early burst of genome restructuring. The coleoid genomes feature multi-megabase, tandem arrays of genes associated with brain development and cephalopod-specific innovations. We find that a known coleoid hallmark, extensive A-to-I mRNA editing, displays two fundamentally distinct patterns: one exclusive to the nervous system and concentrated in genic sequences, the other widespread and directed toward repetitive elements. We conclude that coleoid novelty is mediated in part by substantial genome reorganization, gene family expansion, and tissue-dependent mRNA editing.

Suggested Citation

  • Caroline B. Albertin & Sofia Medina-Ruiz & Therese Mitros & Hannah Schmidbaur & Gustavo Sanchez & Z. Yan Wang & Jane Grimwood & Joshua J. C. Rosenthal & Clifton W. Ragsdale & Oleg Simakov & Daniel S. , 2022. "Genome and transcriptome mechanisms driving cephalopod evolution," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29748-w
    DOI: 10.1038/s41467-022-29748-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29748-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29748-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daohan Jiang & Jianzhi Zhang, 2019. "The preponderance of nonsynonymous A-to-I RNA editing in coleoids is nonadaptive," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Nicholas H. Putnam & Thomas Butts & David E. K. Ferrier & Rebecca F. Furlong & Uffe Hellsten & Takeshi Kawashima & Marc Robinson-Rechavi & Eiichi Shoguchi & Astrid Terry & Jr-Kai Yu & E`lia Benito-Gut, 2008. "The amphioxus genome and the evolution of the chordate karyotype," Nature, Nature, vol. 453(7198), pages 1064-1071, June.
    3. Caroline B. Albertin & Oleg Simakov & Therese Mitros & Z. Yan Wang & Judit R. Pungor & Eric Edsinger-Gonzales & Sydney Brenner & Clifton W. Ragsdale & Daniel S. Rokhsar, 2015. "The octopus genome and the evolution of cephalopod neural and morphological novelties," Nature, Nature, vol. 524(7564), pages 220-224, August.
    4. Meng How Tan & Qin Li & Raghuvaran Shanmugam & Robert Piskol & Jennefer Kohler & Amy N. Young & Kaiwen Ivy Liu & Rui Zhang & Gokul Ramaswami & Kentaro Ariyoshi & Ankita Gupte & Liam P. Keegan & Cyril , 2017. "Dynamic landscape and regulation of RNA editing in mammals," Nature, Nature, vol. 550(7675), pages 249-254, October.
    5. Hannah Schmidbaur & Akane Kawaguchi & Tereza Clarence & Xiao Fu & Oi Pui Hoang & Bob Zimmermann & Elena A. Ritschard & Anton Weissenbacher & Jamie S. Foster & Spencer V. Nyholm & Paul A. Bates & Carol, 2022. "Emergence of novel cephalopod gene regulation and expression through large-scale genome reorganization," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claire S. Chung & Yi Kou & Sarah J. Shemtov & Bert M. Verheijen & Ilse Flores & Kayla Love & Ashley Dosso & Max A. Thorwald & Yuchen Liu & Daniel Hicks & Yingwo Sun & Renaldo G. Toney & Lucy Carrillo , 2024. "Transcript errors generate amyloid-like proteins in human cells," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Orshay Gabay & Yoav Shoshan & Eli Kopel & Udi Ben-Zvi & Tomer D. Mann & Noam Bressler & Roni Cohen‐Fultheim & Amos A. Schaffer & Shalom Hillel Roth & Ziv Tzur & Erez Y. Levanon & Eli Eisenberg, 2022. "Landscape of adenosine-to-inosine RNA recoding across human tissues," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Neil D. Young & Andreas J. Stroehlein & Tao Wang & Pasi K. Korhonen & Margaret Mentink-Kane & J. Russell Stothard & David Rollinson & Robin B. Gasser, 2022. "Nuclear genome of Bulinus truncatus, an intermediate host of the carcinogenic human blood fluke Schistosoma haematobium," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Karthika Devi Kiran Kumar & Shubhangi Singh & Stella Maria Schmelzle & Paul Vogel & Carolin Fruhner & Alfred Hanswillemenke & Adrian Brun & Jacqueline Wettengel & Yvonne Füll & Lukas Funk & Valentin M, 2024. "An improved SNAP-ADAR tool enables efficient RNA base editing to interfere with post-translational protein modification," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Yiyi Ma & Eric B. Dammer & Daniel Felsky & Duc M. Duong & Hans-Ulrich Klein & Charles C. White & Maotian Zhou & Benjamin A. Logsdon & Cristin McCabe & Jishu Xu & Minghui Wang & Thomas S. Wingo & James, 2021. "Atlas of RNA editing events affecting protein expression in aged and Alzheimer’s disease human brain tissue," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    5. Hannah Schmidbaur & Akane Kawaguchi & Tereza Clarence & Xiao Fu & Oi Pui Hoang & Bob Zimmermann & Elena A. Ritschard & Anton Weissenbacher & Jamie S. Foster & Spencer V. Nyholm & Paul A. Bates & Carol, 2022. "Emergence of novel cephalopod gene regulation and expression through large-scale genome reorganization," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Marlon S. Zambrano-Mila & Monika Witzenberger & Zohar Rosenwasser & Anna Uzonyi & Ronit Nir & Shay Ben-Aroya & Erez Y. Levanon & Schraga Schwartz, 2023. "Dissecting the basis for differential substrate specificity of ADAR1 and ADAR2," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Ruth Styfhals & Grygoriy Zolotarov & Gert Hulselmans & Katina I. Spanier & Suresh Poovathingal & Ali M. Elagoz & Seppe Winter & Astrid Deryckere & Nikolaus Rajewsky & Giovanna Ponte & Graziano Fiorito, 2022. "Cell type diversity in a developing octopus brain," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    8. Blazewicz, Jacek & Kasprzak, Marta & Kierzynka, Michal & Frohmberg, Wojciech & Swiercz, Aleksandra & Wojciechowski, Pawel & Zurkowski, Piotr, 2018. "Graph algorithms for DNA sequencing – origins, current models and the future," European Journal of Operational Research, Elsevier, vol. 264(3), pages 799-812.
    9. Yuta Noda & Shunpei Okada & Tsutomu Suzuki, 2022. "Regulation of A-to-I RNA editing and stop codon recoding to control selenoprotein expression during skeletal myogenesis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. Jianheng Liu & Tao Huang & Wanying Chen & Chenhui Ding & Tianxuan Zhao & Xueni Zhao & Bing Cai & Yusen Zhang & Song Li & Ling Zhang & Maoguang Xue & Xiuju He & Wanzhong Ge & Canquan Zhou & Yanwen Xu &, 2022. "Developmental mRNA m5C landscape and regulatory innovations of massive m5C modification of maternal mRNAs in animals," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Woranop Sukparangsi & Elena Morganti & Molly Lowndes & Hélène Mayeur & Melanie Weisser & Fella Hammachi & Hanna Peradziryi & Fabian Roske & Jurriaan Hölzenspies & Alessandra Livigni & Benoit Gilbert G, 2022. "Evolutionary origin of vertebrate OCT4/POU5 functions in supporting pluripotency," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    12. Konstantin Gorbunov & Vassily Lyubetsky, 2020. "Linear Time Additively Exact Algorithm for Transformation of Chain-Cycle Graphs for Arbitrary Costs of Deletions and Insertions," Mathematics, MDPI, vol. 8(11), pages 1-30, November.
    13. Celina Tretter & Niklas Andrade Krätzig & Matteo Pecoraro & Sebastian Lange & Philipp Seifert & Clara Frankenberg & Johannes Untch & Gabriela Zuleger & Mathias Wilhelm & Daniel P. Zolg & Florian S. Dr, 2023. "Proteogenomic analysis reveals RNA as a source for tumor-agnostic neoantigen identification," Nature Communications, Nature, vol. 14(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29748-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.