IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42818-x.html
   My bibliography  Save this article

2D quasi-layered material with domino structure

Author

Listed:
  • Haihui Lan

    (Wuhan University
    Massachusetts Institute of Technology)

  • Luyang Wang

    (Wuhan University)

  • Runze He

    (Wuhan University)

  • Shuyi Huang

    (Wuhan University)

  • Jinqiu Yu

    (Wuhan University)

  • Jinming Guo

    (Hubei University)

  • Jingrui Luo

    (Wuhan University)

  • Yiling Li

    (Wuhan University)

  • Jinyang Zhang

    (Hubei University)

  • Jiaxin Lin

    (Wuhan University)

  • Shunping Zhang

    (Wuhan University)

  • Mengqi Zeng

    (Wuhan University)

  • Lei Fu

    (Wuhan University
    Wuhan University)

Abstract

Interlayer coupling strength dichotomizes two-dimensional (2D) materials into layered and non-layered types. Traditionally, they can be regarded as atomic layers intrinsically linked via van der Waals (vdW) forces or covalent bonds, oriented orthogonally to their growth plane. In our work, we report a material system that differentiates from layered and non-layered materials, termed quasi-layered domino-structured (QLDS) materials, effectively bridging the gap between these two typical categories. Considering the skewed structure, the force orthogonal to the 2D QLDS-GaTe growth plane constitutes a synergistic blend of vdW forces and covalent bonds, with neither of them being perpendicular to the 2D growth plane. This unique amalgamation results in a force that surpasses that in layered materials, yet is weaker than that in non-layered materials. Therefore, the lattice constant contraction along this unique orientation can be as much as 7.7%, tantalizingly close to the theoretical prediction of 10.8%. Meanwhile, this feature endows remarkable anisotropy, second harmonic generation enhancement with a staggering susceptibility of 394.3 pm V−1. These findings endow further applications arranged in nonlinear optics, sensors, and catalysis.

Suggested Citation

  • Haihui Lan & Luyang Wang & Runze He & Shuyi Huang & Jinqiu Yu & Jinming Guo & Jingrui Luo & Yiling Li & Jinyang Zhang & Jiaxin Lin & Shunping Zhang & Mengqi Zeng & Lei Fu, 2023. "2D quasi-layered material with domino structure," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42818-x
    DOI: 10.1038/s41467-023-42818-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42818-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42818-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jianfeng Jiang & Lin Xu & Chenguang Qiu & Lian-Mao Peng, 2023. "Ballistic two-dimensional InSe transistors," Nature, Nature, vol. 616(7957), pages 470-475, April.
    2. Lukas Mennel & Joanna Symonowicz & Stefan Wachter & Dmitry K. Polyushkin & Aday J. Molina-Mendoza & Thomas Mueller, 2020. "Ultrafast machine vision with 2D material neural network image sensors," Nature, Nature, vol. 579(7797), pages 62-66, March.
    3. Yunxu Chen & Jinxin Liu & Mengqi Zeng & Fangyun Lu & Tianrui Lv & Yuan Chang & Haihui Lan & Bin Wei & Rong Sun & Junfeng Gao & Zhongchang Wang & Lei Fu, 2020. "Universal growth of ultra-thin III–V semiconductor single crystals," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuyan Zhu & Yang Wang & Xingchen Pang & Yongbo Jiang & Xiaoxian Liu & Qing Li & Zhen Wang & Chunsen Liu & Weida Hu & Peng Zhou, 2024. "Non-volatile 2D MoS2/black phosphorus heterojunction photodiodes in the near- to mid-infrared region," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Xun Han & Juan Tao & Yegang Liang & Feng Guo & Zhangsheng Xu & Wenqiang Wu & Jiahui Tong & Mengxiao Chen & Caofeng Pan & Jianhua Hao, 2024. "Ultraweak light-modulated heterostructure with bidirectional photoresponse for static and dynamic image perception," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Zhixin Yao & Huifeng Tian & U. Sasaki & Huacong Sun & Jingyi Hu & Guodong Xue & Ye Seul Jung & Ruijie Li & Zhenjiang Li & PeiChi Liao & Yihan Wang & Lina Yang Zhang & Ge Yin & Xuanyu Zhang & Yijie Luo, 2025. "Transferrable, wet-chemistry-derived high-k amorphous metal oxide dielectrics for two-dimensional electronic devices," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    4. Lei Tong & Yali Bi & Yilun Wang & Kai Peng & Xinyu Huang & Wei Ju & Zhuiri Peng & Zheng Li & Langlang Xu & Runfeng Lin & Xiangxiang Yu & Wenhao Shi & Hui Yu & Huajun Sun & Kanhao Xue & Qiang He & Ming, 2024. "Programmable nonlinear optical neuromorphic computing with bare 2D material MoS2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Ge Li & Donggang Xie & Qinghua Zhang & Mingzhen Zhang & Zhuohui Liu & Zheng Wang & Jiahui Xie & Erjia Guo & Meng He & Can Wang & Lin Gu & Guozhen Yang & Kuijuan Jin & Chen Ge, 2025. "Interface-engineered non-volatile visible-blind photodetector for in-sensor computing," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    6. Xinyu Chen & Yufeng Xie & Yaochen Sheng & Hongwei Tang & Zeming Wang & Yu Wang & Yin Wang & Fuyou Liao & Jingyi Ma & Xiaojiao Guo & Ling Tong & Hanqi Liu & Hao Liu & Tianxiang Wu & Jiaxin Cao & Sitong, 2021. "Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    7. Jiabiao Chen & Zhaochao Liu & Xinyue Dong & Zhansheng Gao & Yuxuan Lin & Yuyu He & Yingnan Duan & Tonghuai Cheng & Zhengyang Zhou & Huixia Fu & Feng Luo & Jinxiong Wu, 2023. "Vertically grown ultrathin Bi2SiO5 as high-κ single-crystalline gate dielectric," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Xingchen Pang & Yang Wang & Yuyan Zhu & Zhenhan Zhang & Du Xiang & Xun Ge & Haoqi Wu & Yongbo Jiang & Zizheng Liu & Xiaoxian Liu & Chunsen Liu & Weida Hu & Peng Zhou, 2024. "Non-volatile rippled-assisted optoelectronic array for all-day motion detection and recognition," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Bo Tong & Jiajun Xu & Jinhong Du & Peitao Liu & Tianming Du & Qiang Wang & Langjun Li & Yuning Wei & Jiangxu Li & Jinhua Liang & Chi Liu & Zhibo Liu & Chen Li & Lai-Peng Ma & Yang Chai & Wencai Ren, 2025. "2D (NH4)BiI3 enables non-volatile optoelectronic memories for machine learning," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    10. Yue Gong & Ruihuan Duan & Yi Hu & Yao Wu & Song Zhu & Xingli Wang & Qijie Wang & Shu Ping Lau & Zheng Liu & Beng Kang Tay, 2025. "Reconfigurable and nonvolatile ferroelectric bulk photovoltaics based on 3R-WS2 for machine vision," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    11. Tian Zhang & Xin Guo & Pan Wang & Xinyi Fan & Zichen Wang & Yan Tong & Decheng Wang & Limin Tong & Linjun Li, 2024. "High performance artificial visual perception and recognition with a plasmon-enhanced 2D material neural network," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Hao Jiang & Yinzhu Chen & Wenyu Guo & Yan Zhang & Rigui Zhou & Mile Gu & Fan Zhong & Zhenhua Ni & Junpeng Lu & Cheng-Wei Qiu & Weibo Gao, 2024. "Metasurface-enabled broadband multidimensional photodetectors," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Luying Song & Ying Zhao & Bingqian Xu & Ruofan Du & Hui Li & Wang Feng & Junbo Yang & Xiaohui Li & Zijia Liu & Xia Wen & Yanan Peng & Yuzhu Wang & Hang Sun & Ling Huang & Yulin Jiang & Yao Cai & Xue J, 2024. "Robust multiferroic in interfacial modulation synthesized wafer-scale one-unit-cell of chromium sulfide," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Doeon Lee & Minseong Park & Yongmin Baek & Byungjoon Bae & Junseok Heo & Kyusang Lee, 2022. "In-sensor image memorization and encoding via optical neurons for bio-stimulus domain reduction toward visual cognitive processing," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Changsoon Choi & Henry Hinton & Hyojin Seung & Sehui Chang & Ji Su Kim & Woosang You & Min Sung Kim & Jung Pyo Hong & Jung Ah Lim & Do Kyung Hwang & Gil Ju Lee & Houk Jang & Young Min Song & Dae-Hyeon, 2024. "Anti-distortion bioinspired camera with an inhomogeneous photo-pixel array," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Dehui Zhang & Dong Xu & Yuhang Li & Yi Luo & Jingtian Hu & Jingxuan Zhou & Yucheng Zhang & Boxuan Zhou & Peiqi Wang & Xurong Li & Bijie Bai & Huaying Ren & Laiyuan Wang & Ao Zhang & Mona Jarrahi & Yu , 2024. "Broadband nonlinear modulation of incoherent light using a transparent optoelectronic neuron array," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Robert Tseng & Sung-Tsun Wang & Tanveer Ahmed & Yi-Yu Pan & Shih-Chieh Chen & Che-Chi Shih & Wu-Wei Tsai & Hai-Ching Chen & Chi-Chung Kei & Tsung-Te Chou & Wen-Ching Hung & Jyh-Chen Chen & Yi-Hou Kuo , 2023. "Wide-range and area-selective threshold voltage tunability in ultrathin indium oxide transistors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. Tao Guo & Shasha Li & Y. Norman Zhou & Wei D. Lu & Yong Yan & Yimin A. Wu, 2024. "Interspecies-chimera machine vision with polarimetry for real-time navigation and anti-glare pattern recognition," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Yan Sun & Shuting Xu & Zheqi Xu & Jiamin Tian & Mengmeng Bai & Zhiying Qi & Yue Niu & Hein Htet Aung & Xiaolu Xiong & Junfeng Han & Cuicui Lu & Jianbo Yin & Sheng Wang & Qing Chen & Reshef Tenne & All, 2022. "Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    20. Pei-Yu Huang & Bi-Yi Jiang & Hong-Ji Chen & Jia-Yi Xu & Kang Wang & Cheng-Yi Zhu & Xin-Yan Hu & Dong Li & Liang Zhen & Fei-Chi Zhou & Jing-Kai Qin & Cheng-Yan Xu, 2023. "Neuro-inspired optical sensor array for high-accuracy static image recognition and dynamic trace extraction," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42818-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.