IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-03793-w.html
   My bibliography  Save this article

Combining CO2 reduction with propane oxidative dehydrogenation over bimetallic catalysts

Author

Listed:
  • Elaine Gomez

    (Columbia University)

  • Shyam Kattel

    (Brookhaven National Laboratory)

  • Binhang Yan

    (Brookhaven National Laboratory)

  • Siyu Yao

    (Brookhaven National Laboratory)

  • Ping Liu

    (Brookhaven National Laboratory)

  • Jingguang G. Chen

    (Columbia University
    Brookhaven National Laboratory)

Abstract

The inherent variability and insufficiencies in the co-production of propylene from steam crackers has raised concerns regarding the global propylene production gap and has directed industry to develop more on-purpose propylene technologies. The oxidative dehydrogenation of propane by CO2 (CO2-ODHP) can potentially fill this gap while consuming a greenhouse gas. Non-precious FeNi and precious NiPt catalysts supported on CeO2 have been identified as promising catalysts for CO2-ODHP and dry reforming, respectively, in flow reactor studies conducted at 823 K. In-situ X-ray absorption spectroscopy measurements revealed the oxidation states of metals under reaction conditions and density functional theory calculations were utilized to identify the most favorable reaction pathways over the two types of catalysts.

Suggested Citation

  • Elaine Gomez & Shyam Kattel & Binhang Yan & Siyu Yao & Ping Liu & Jingguang G. Chen, 2018. "Combining CO2 reduction with propane oxidative dehydrogenation over bimetallic catalysts," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03793-w
    DOI: 10.1038/s41467-018-03793-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-03793-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-03793-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinlong Ma & Haibin Yin & Zhengtian Pu & Xinyan Zhang & Sunpei Hu & Tao Zhou & Weizhe Gao & Laihao Luo & Hongliang Li & Jie Zeng, 2024. "Propane wet reforming over PtSn nanoparticles on γ-Al2O3 for acetone synthesis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Feilong Xing & Jiamin Ma & Ken-ichi Shimizu & Shinya Furukawa, 2022. "High-entropy intermetallics on ceria as efficient catalysts for the oxidative dehydrogenation of propane using CO2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Jalid, Fatima & Khan, Tuhin Suvra & Haider, M. Ali, 2021. "Exploring bimetallic alloy catalysts of Co, Pd and Cu for CO2 reduction combined with ethane dehydrogenation," Applied Energy, Elsevier, vol. 299(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03793-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.