IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34738-z.html
   My bibliography  Save this article

Full-spectrum nonmetallic plasmonic carriers for efficient isopropanol dehydration

Author

Listed:
  • Changhai Lu

    (Jinan University)

  • Daotong You

    (Jinan University)

  • Juan Li

    (Jinan University)

  • Long Wen

    (Jinan University)

  • Baojun Li

    (Jinan University)

  • Tuan Guo

    (Jinan University
    Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai))

  • Zaizhu Lou

    (Jinan University)

Abstract

Plasmonic hot carriers have the advantage of focusing, amplifying, and manipulating optical signals via electron oscillations which offers a feasible pathway to influence catalytic reactions. However, the contribution of nonmetallic hot carriers and thermal effects on the overall reactions are still unclear, and developing methods to enhance the efficiency of the catalysis is critical. Herein, we proposed a new strategy for flexibly modulating the hot electrons using a nonmetallic plasmonic heterostructure (named W18O49-nanowires/reduced-graphene-oxides) for isopropanol dehydration where the reaction rate was 180-fold greater than the corresponding thermocatalytic pathway. The key detail to this strategy lies in the synergetic utilization of ultraviolet light and visible-near-infrared light to enhance the hot electron generation and promote electron transfer for C-O bond cleavage during isopropanol dehydration reaction. This, in turn, results in a reduced reaction activation barrier down to 0.37 eV (compared to 1.0 eV of thermocatalysis) and a significantly improved conversion efficiency of 100% propylene from isopropanol. This work provides an additional strategy to modulate hot carrier of plasmonic semiconductors and helps guide the design of better catalytic materials and chemistries.

Suggested Citation

  • Changhai Lu & Daotong You & Juan Li & Long Wen & Baojun Li & Tuan Guo & Zaizhu Lou, 2022. "Full-spectrum nonmetallic plasmonic carriers for efficient isopropanol dehydration," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34738-z
    DOI: 10.1038/s41467-022-34738-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34738-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34738-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuki Nakaya & Jun Hirayama & Seiji Yamazoe & Ken-ichi Shimizu & Shinya Furukawa, 2020. "Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xueying Wan & Yifan Li & Yihong Chen & Jun Ma & Ying-Ao Liu & En-Dian Zhao & Yadi Gu & Yilin Zhao & Yi Cui & Rongtan Li & Dong Liu & Ran Long & Kim Meow Liew & Yujie Xiong, 2024. "A nonmetallic plasmonic catalyst for photothermal CO2 flow conversion with high activity, selectivity and durability," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian-Wei Song & Cong Xu & Zhu-Tao Sheng & Hui-Kun Yan & Lei Tong & Jun Liu & Wei-Jie Zeng & Lu-Jie Zuo & Peng Yin & Ming Zuo & Sheng-Qi Chu & Ping Chen & Hai-Wei Liang, 2022. "Small molecule-assisted synthesis of carbon supported platinum intermetallic fuel cell catalysts," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Pingping Wei & Sai Chen & Ran Luo & Guodong Sun & Kexin Wu & Donglong Fu & Zhi-Jian Zhao & Chunlei Pei & Ning Yan & Jinlong Gong, 2024. "Stable and homogeneous intermetallic alloys by atomic gas-migration for propane dehydrogenation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Yong Yuan & Erwei Huang & Sooyeon Hwang & Ping Liu & Jingguang G. Chen, 2024. "Confining platinum clusters in indium-modified ZSM-5 zeolite to promote propane dehydrogenation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Xinlong Ma & Haibin Yin & Zhengtian Pu & Xinyan Zhang & Sunpei Hu & Tao Zhou & Weizhe Gao & Laihao Luo & Hongliang Li & Jie Zeng, 2024. "Propane wet reforming over PtSn nanoparticles on γ-Al2O3 for acetone synthesis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34738-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.