IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52564-3.html
   My bibliography  Save this article

Universal correlation between H-linear magnetoresistance and T-linear resistivity in high-temperature superconductors

Author

Listed:
  • J. Ayres

    (University of Bristol)

  • M. Berben

    (Radboud University)

  • C. Duffy

    (Radboud University
    Univ. Toulouse, INSA-T)

  • R. D. H. Hinlopen

    (University of Bristol
    Max-Planck-Institute for the Structure and Dynamics of Materials)

  • Y.-T. Hsu

    (Radboud University
    National Tsing Hua University)

  • A. Cuoghi

    (Radboud University)

  • M. Leroux

    (Univ. Toulouse, INSA-T)

  • I. Gilmutdinov

    (Univ. Toulouse, INSA-T)

  • M. Massoudzadegan

    (Univ. Toulouse, INSA-T)

  • D. Vignolles

    (Univ. Toulouse, INSA-T)

  • Y. Huang

    (University of Amsterdam)

  • T. Kondo

    (University of Tokyo)

  • T. Takeuchi

    (Toyota Technological Institute)

  • S. Friedemann

    (University of Bristol)

  • A. Carrington

    (University of Bristol)

  • C. Proust

    (Univ. Toulouse, INSA-T)

  • N. E. Hussey

    (University of Bristol
    Radboud University)

Abstract

The signature feature of the ‘strange metal’ state of high-Tc cuprates—its linear-in-temperature resistivity—has a coefficient α1 that correlates with Tc, as expected were α1 derived from scattering off the same bosonic fluctuations that mediate pairing. Recently, an anomalous linear-in-field magnetoresistance (=γ1H) has also been observed, but only over a narrow doping range, leaving its relation to the strange metal state and to the superconductivity unclear. Here, we report in-plane magnetoresistance measurements on three hole-doped cuprate families spanning a wide range of temperatures, magnetic field strengths and doping. In contrast to expectations from Boltzmann transport theory, γ1 is found to correlate universally with α1. A phenomenological model incorporating real-space inhomogeneity is proposed to explain this correlation. Within this picture, superconductivity in hole-doped cuprates is governed not by the strength of quasiparticle interactions with a bosonic bath, but by the concentration of strange metallic carriers.

Suggested Citation

  • J. Ayres & M. Berben & C. Duffy & R. D. H. Hinlopen & Y.-T. Hsu & A. Cuoghi & M. Leroux & I. Gilmutdinov & M. Massoudzadegan & D. Vignolles & Y. Huang & T. Kondo & T. Takeuchi & S. Friedemann & A. Car, 2024. "Universal correlation between H-linear magnetoresistance and T-linear resistivity in high-temperature superconductors," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52564-3
    DOI: 10.1038/s41467-024-52564-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52564-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52564-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jie Yuan & Qihong Chen & Kun Jiang & Zhongpei Feng & Zefeng Lin & Heshan Yu & Ge He & Jinsong Zhang & Xingyu Jiang & Xu Zhang & Yujun Shi & Yanmin Zhang & Mingyang Qin & Zhi Gang Cheng & Nobumichi Tam, 2022. "Scaling of the strange-metal scattering in unconventional superconductors," Nature, Nature, vol. 602(7897), pages 431-436, February.
    2. S. Licciardello & J. Buhot & J. Lu & J. Ayres & S. Kasahara & Y. Matsuda & T. Shibauchi & N. E. Hussey, 2019. "Electrical resistivity across a nematic quantum critical point," Nature, Nature, vol. 567(7747), pages 213-217, March.
    3. Jan Zaanen, 2004. "Why the temperature is high," Nature, Nature, vol. 430(6999), pages 512-513, July.
    4. Gaël Grissonnanche & Yawen Fang & Anaëlle Legros & Simon Verret & Francis Laliberté & Clément Collignon & Jianshi Zhou & David Graf & Paul A. Goddard & Louis Taillefer & B. J. Ramshaw, 2021. "Linear-in temperature resistivity from an isotropic Planckian scattering rate," Nature, Nature, vol. 595(7869), pages 667-672, July.
    5. J. Ayres & M. Berben & M. Čulo & Y.-T. Hsu & E. Heumen & Y. Huang & J. Zaanen & T. Kondo & T. Takeuchi & J. R. Cooper & C. Putzke & S. Friedemann & A. Carrington & N. E. Hussey, 2021. "Incoherent transport across the strange-metal regime of overdoped cuprates," Nature, Nature, vol. 595(7869), pages 661-666, July.
    6. M. M. Parish & P. B. Littlewood, 2003. "Non-saturating magnetoresistance in heavily disordered semiconductors," Nature, Nature, vol. 426(6963), pages 162-165, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu-Te Hsu & Kyuho Lee & Sven Badoux & Caitlin Duffy & Alessandro Cuoghi & Bai Yang Wang & Arwin Kool & Isaac Haïk-Dunn & Harold Y. Hwang & Nigel E. Hussey, 2024. "Transport phase diagram and anomalous metallicity in superconducting infinite-layer nickelates," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Bastien Michon & Christophe Berthod & Carl Willem Rischau & Amirreza Ataei & Lu Chen & Seiki Komiya & Shimpei Ono & Louis Taillefer & Dirk Marel & Antoine Georges, 2023. "Reconciling scaling of the optical conductivity of cuprate superconductors with Planckian resistivity and specific heat," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Shu Cai & Jinyu Zhao & Ni Ni & Jing Guo & Run Yang & Pengyu Wang & Jinyu Han & Sijin Long & Yazhou Zhou & Qi Wu & Xianggang Qiu & Tao Xiang & Robert J. Cava & Liling Sun, 2023. "The breakdown of both strange metal and superconducting states at a pressure-induced quantum critical point in iron-pnictide superconductors," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. Shusen Ye & Miao Xu & Hongtao Yan & Zi-Xiang Li & Changwei Zou & Xintong Li & Zhenqi Hao & Chaohui Yin & Yiwen Chen & Xingjiang Zhou & Dung-Hai Lee & Yayu Wang, 2024. "Emergent normal fluid in the superconducting ground state of overdoped cuprates," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Matthew Brahlek & Joseph D. Roth & Lei Zhang & Megan Briggeman & Patrick Irvin & Jason Lapano & Jeremy Levy & Turan Birol & Roman Engel-Herbert, 2024. "Hidden transport phenomena in an ultraclean correlated metal," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Yung-Yeh Chang & Hechang Lei & C. Petrovic & Chung-Hou Chung, 2023. "The scaled-invariant Planckian metal and quantum criticality in Ce1−xNdxCoIn5," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    7. S. Smit & E. Mauri & L. Bawden & F. Heringa & F. Gerritsen & E. Heumen & Y. K. Huang & T. Kondo & T. Takeuchi & N. E. Hussey & M. Allan & T. K. Kim & C. Cacho & A. Krikun & K. Schalm & H.T.C. Stoof & , 2024. "Momentum-dependent scaling exponents of nodal self-energies measured in strange metal cuprates and modelled using semi-holography," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Carsten Putzke & Chunyu Guo & Vincent Plisson & Martin Kroner & Thibault Chervy & Matteo Simoni & Pim Wevers & Maja D. Bachmann & John R. Cooper & Antony Carrington & Naoki Kikugawa & Jennifer Fowlie , 2023. "Layered metals as polarized transparent conductors," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    9. M. Čulo & S. Licciardello & K. Ishida & K. Mukasa & J. Ayres & J. Buhot & Y.-T. Hsu & S. Imajo & M. W. Qiu & M. Saito & Y. Uezono & T. Otsuka & T. Watanabe & K. Kindo & T. Shibauchi & S. Kasahara & Y., 2023. "Expanded quantum vortex liquid regimes in the electron nematic superconductors FeSe1−xSx and FeSe1−xTex," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Riccardo Arpaia & Leonardo Martinelli & Marco Moretti Sala & Sergio Caprara & Abhishek Nag & Nicholas B. Brookes & Pietro Camisa & Qizhi Li & Qiang Gao & Xingjiang Zhou & Mirian Garcia-Fernandez & Ke-, 2023. "Signature of quantum criticality in cuprates by charge density fluctuations," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Binjie Zheng & Junzhuan Wang & Qianghua Wang & Xin Su & Tianye Huang & Songlin Li & Fengqiu Wang & Yi Shi & Xiaomu Wang, 2022. "Quantum criticality of excitonic Mott metal-insulator transitions in black phosphorus," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52564-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.