IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v567y2019i7747d10.1038_s41586-019-0923-y.html
   My bibliography  Save this article

Electrical resistivity across a nematic quantum critical point

Author

Listed:
  • S. Licciardello

    (Radboud University)

  • J. Buhot

    (Radboud University)

  • J. Lu

    (Radboud University)

  • J. Ayres

    (Radboud University
    University of Bristol)

  • S. Kasahara

    (Kyoto University)

  • Y. Matsuda

    (Kyoto University)

  • T. Shibauchi

    (University of Tokyo)

  • N. E. Hussey

    (Radboud University)

Abstract

Correlated electron systems are highly susceptible to various forms of electronic order. By tuning the transition temperature towards absolute zero, striking deviations from conventional metallic (Fermi-liquid) behaviour can be realized. Evidence for electronic nematicity, a correlated electronic state with broken rotational symmetry, has been reported in a host of metallic systems1–5 that exhibit this so-called quantum critical behaviour. In all cases, however, the nematicity is found to be intertwined with other forms of order, such as antiferromagnetism5–7 or charge-density-wave order8, that might themselves be responsible for the observed behaviour. The iron chalcogenide FeSe1−xSx is unique in this respect because its nematic order appears to exist in isolation9–11, although until now, the impact of nematicity on the electronic ground state has been obscured by superconductivity. Here we use high magnetic fields to destroy the superconducting state in FeSe1−xSx and follow the evolution of the electrical resistivity across the nematic quantum critical point. Classic signatures of quantum criticality are revealed: an enhancement in the coefficient of the T2 resistivity (due to electron–electron scattering) on approaching the critical point and, at the critical point itself, a strictly T-linear resistivity that extends over a decade in temperature T. In addition to revealing the phenomenon of nematic quantum criticality, the observation of T-linear resistivity at a nematic critical point also raises the question of whether strong nematic fluctuations play a part in the transport properties of other ‘strange metals’, in which T-linear resistivity is observed over an extended regime in their respective phase diagrams.

Suggested Citation

  • S. Licciardello & J. Buhot & J. Lu & J. Ayres & S. Kasahara & Y. Matsuda & T. Shibauchi & N. E. Hussey, 2019. "Electrical resistivity across a nematic quantum critical point," Nature, Nature, vol. 567(7747), pages 213-217, March.
  • Handle: RePEc:nat:nature:v:567:y:2019:i:7747:d:10.1038_s41586-019-0923-y
    DOI: 10.1038/s41586-019-0923-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-0923-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-0923-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yung-Yeh Chang & Hechang Lei & C. Petrovic & Chung-Hou Chung, 2023. "The scaled-invariant Planckian metal and quantum criticality in Ce1−xNdxCoIn5," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    2. M. Čulo & S. Licciardello & K. Ishida & K. Mukasa & J. Ayres & J. Buhot & Y.-T. Hsu & S. Imajo & M. W. Qiu & M. Saito & Y. Uezono & T. Otsuka & T. Watanabe & K. Kindo & T. Shibauchi & S. Kasahara & Y., 2023. "Expanded quantum vortex liquid regimes in the electron nematic superconductors FeSe1−xSx and FeSe1−xTex," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Yu-Te Hsu & Kyuho Lee & Sven Badoux & Caitlin Duffy & Alessandro Cuoghi & Bai Yang Wang & Arwin Kool & Isaac Haïk-Dunn & Harold Y. Hwang & Nigel E. Hussey, 2024. "Transport phase diagram and anomalous metallicity in superconducting infinite-layer nickelates," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. J. Ayres & M. Berben & C. Duffy & R. D. H. Hinlopen & Y.-T. Hsu & A. Cuoghi & M. Leroux & I. Gilmutdinov & M. Massoudzadegan & D. Vignolles & Y. Huang & T. Kondo & T. Takeuchi & S. Friedemann & A. Car, 2024. "Universal correlation between H-linear magnetoresistance and T-linear resistivity in high-temperature superconductors," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:567:y:2019:i:7747:d:10.1038_s41586-019-0923-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.