IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v430y2004i6999d10.1038_430512a.html
   My bibliography  Save this article

Why the temperature is high

Author

Listed:
  • Jan Zaanen

    (Instituut Lorentz for Theoretical Physics, Leiden University)

Abstract

According to a new empirical law, the transition temperature to superconductivity is high in copper oxides because their metallic states are as viscous as is permitted by the laws of quantum physics.

Suggested Citation

  • Jan Zaanen, 2004. "Why the temperature is high," Nature, Nature, vol. 430(6999), pages 512-513, July.
  • Handle: RePEc:nat:nature:v:430:y:2004:i:6999:d:10.1038_430512a
    DOI: 10.1038/430512a
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/430512a
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/430512a?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bastien Michon & Christophe Berthod & Carl Willem Rischau & Amirreza Ataei & Lu Chen & Seiki Komiya & Shimpei Ono & Louis Taillefer & Dirk Marel & Antoine Georges, 2023. "Reconciling scaling of the optical conductivity of cuprate superconductors with Planckian resistivity and specific heat," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Riccardo Arpaia & Leonardo Martinelli & Marco Moretti Sala & Sergio Caprara & Abhishek Nag & Nicholas B. Brookes & Pietro Camisa & Qizhi Li & Qiang Gao & Xingjiang Zhou & Mirian Garcia-Fernandez & Ke-, 2023. "Signature of quantum criticality in cuprates by charge density fluctuations," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Binjie Zheng & Junzhuan Wang & Qianghua Wang & Xin Su & Tianye Huang & Songlin Li & Fengqiu Wang & Yi Shi & Xiaomu Wang, 2022. "Quantum criticality of excitonic Mott metal-insulator transitions in black phosphorus," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. J. Ayres & M. Berben & C. Duffy & R. D. H. Hinlopen & Y.-T. Hsu & A. Cuoghi & M. Leroux & I. Gilmutdinov & M. Massoudzadegan & D. Vignolles & Y. Huang & T. Kondo & T. Takeuchi & S. Friedemann & A. Car, 2024. "Universal correlation between H-linear magnetoresistance and T-linear resistivity in high-temperature superconductors," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:430:y:2004:i:6999:d:10.1038_430512a. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.