IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54135-y.html
   My bibliography  Save this article

Transport phase diagram and anomalous metallicity in superconducting infinite-layer nickelates

Author

Listed:
  • Yu-Te Hsu

    (Radboud University
    National Tsing Hua University
    National Tsing Hua University)

  • Kyuho Lee

    (Stanford University
    SLAC National Accelerator Laboratory)

  • Sven Badoux

    (Radboud University
    Laboratoire National des Champs Magnétiques Intenses (CNRS, EMFL, INSA, UGA, UPS))

  • Caitlin Duffy

    (Radboud University
    Laboratoire National des Champs Magnétiques Intenses (CNRS, EMFL, INSA, UGA, UPS))

  • Alessandro Cuoghi

    (Radboud University)

  • Bai Yang Wang

    (Stanford University
    SLAC National Accelerator Laboratory)

  • Arwin Kool

    (Radboud University)

  • Isaac Haïk-Dunn

    (Laboratoire National des Champs Magnétiques Intenses (CNRS, EMFL, INSA, UGA, UPS))

  • Harold Y. Hwang

    (SLAC National Accelerator Laboratory
    Stanford University)

  • Nigel E. Hussey

    (Radboud University
    University of Bristol)

Abstract

Despite obvious similarities in their electronic and crystallographic structures, it remains unclear whether the interactions that shape the normal and superconducting (SC) state properties of high-Tc cuprates and infinite-layer nickelates (ILNs) have the same origin. This question has been brought into sharper focus with recent studies on ILNs of improved crystallinity that reveal a SC dome of comparable extent and similar transport properties above Tc as the hole-doped cuprates. The evolution of these properties in the magnetic-field-induced normal state, however, has yet to be determined. Here, we examine the magnetotransport properties of new-generation Nd1−xSrxNiO2 films in the T → 0 limit across the phase diagram in fields up to 54 T. This extensive study reveals that the limiting low-T form of the normal-state resistivity in ILNs exhibits non-Fermi-liquid behaviour over an extended doping range inside the SC dome, rather than at a singular quantum critical point. While there are clear differences in the charge dynamics of ILNs and cuprates, most notably in the magnetoresistance, our findings reveal that both systems exhibit anomalous metallicity characteristic of a quantum critical phase.

Suggested Citation

  • Yu-Te Hsu & Kyuho Lee & Sven Badoux & Caitlin Duffy & Alessandro Cuoghi & Bai Yang Wang & Arwin Kool & Isaac Haïk-Dunn & Harold Y. Hwang & Nigel E. Hussey, 2024. "Transport phase diagram and anomalous metallicity in superconducting infinite-layer nickelates," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54135-y
    DOI: 10.1038/s41467-024-54135-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54135-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54135-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. Licciardello & J. Buhot & J. Lu & J. Ayres & S. Kasahara & Y. Matsuda & T. Shibauchi & N. E. Hussey, 2019. "Electrical resistivity across a nematic quantum critical point," Nature, Nature, vol. 567(7747), pages 213-217, March.
    2. J. Ayres & M. Berben & M. Čulo & Y.-T. Hsu & E. Heumen & Y. Huang & J. Zaanen & T. Kondo & T. Takeuchi & J. R. Cooper & C. Putzke & S. Friedemann & A. Carrington & N. E. Hussey, 2021. "Incoherent transport across the strange-metal regime of overdoped cuprates," Nature, Nature, vol. 595(7869), pages 661-666, July.
    3. R. Ritz & M. Halder & M. Wagner & C. Franz & A. Bauer & C. Pfleiderer, 2013. "Formation of a topological non-Fermi liquid in MnSi," Nature, Nature, vol. 497(7448), pages 231-234, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Ayres & M. Berben & C. Duffy & R. D. H. Hinlopen & Y.-T. Hsu & A. Cuoghi & M. Leroux & I. Gilmutdinov & M. Massoudzadegan & D. Vignolles & Y. Huang & T. Kondo & T. Takeuchi & S. Friedemann & A. Car, 2024. "Universal correlation between H-linear magnetoresistance and T-linear resistivity in high-temperature superconductors," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Yung-Yeh Chang & Hechang Lei & C. Petrovic & Chung-Hou Chung, 2023. "The scaled-invariant Planckian metal and quantum criticality in Ce1−xNdxCoIn5," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    3. S. Smit & E. Mauri & L. Bawden & F. Heringa & F. Gerritsen & E. Heumen & Y. K. Huang & T. Kondo & T. Takeuchi & N. E. Hussey & M. Allan & T. K. Kim & C. Cacho & A. Krikun & K. Schalm & H.T.C. Stoof & , 2024. "Momentum-dependent scaling exponents of nodal self-energies measured in strange metal cuprates and modelled using semi-holography," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Carsten Putzke & Chunyu Guo & Vincent Plisson & Martin Kroner & Thibault Chervy & Matteo Simoni & Pim Wevers & Maja D. Bachmann & John R. Cooper & Antony Carrington & Naoki Kikugawa & Jennifer Fowlie , 2023. "Layered metals as polarized transparent conductors," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Shu Cai & Jinyu Zhao & Ni Ni & Jing Guo & Run Yang & Pengyu Wang & Jinyu Han & Sijin Long & Yazhou Zhou & Qi Wu & Xianggang Qiu & Tao Xiang & Robert J. Cava & Liling Sun, 2023. "The breakdown of both strange metal and superconducting states at a pressure-induced quantum critical point in iron-pnictide superconductors," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Shusen Ye & Miao Xu & Hongtao Yan & Zi-Xiang Li & Changwei Zou & Xintong Li & Zhenqi Hao & Chaohui Yin & Yiwen Chen & Xingjiang Zhou & Dung-Hai Lee & Yayu Wang, 2024. "Emergent normal fluid in the superconducting ground state of overdoped cuprates," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. M. Čulo & S. Licciardello & K. Ishida & K. Mukasa & J. Ayres & J. Buhot & Y.-T. Hsu & S. Imajo & M. W. Qiu & M. Saito & Y. Uezono & T. Otsuka & T. Watanabe & K. Kindo & T. Shibauchi & S. Kasahara & Y., 2023. "Expanded quantum vortex liquid regimes in the electron nematic superconductors FeSe1−xSx and FeSe1−xTex," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Matthew Brahlek & Joseph D. Roth & Lei Zhang & Megan Briggeman & Patrick Irvin & Jason Lapano & Jeremy Levy & Turan Birol & Roman Engel-Herbert, 2024. "Hidden transport phenomena in an ultraclean correlated metal," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54135-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.