IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19571-6.html
   My bibliography  Save this article

Synthetic strategies of supported atomic clusters for heterogeneous catalysis

Author

Listed:
  • Hongpan Rong

    (School of Materials Science and Engineering, Beijing Institute of Technology)

  • Shufang Ji

    (Tsinghua University)

  • Jiatao Zhang

    (School of Materials Science and Engineering, Beijing Institute of Technology)

  • Dingsheng Wang

    (Tsinghua University)

  • Yadong Li

    (Tsinghua University)

Abstract

Supported atomic clusters with uniform metal sites and definite low-nuclearity are intermediate states between single-atom catalysts (SACs) and nanoparticles in size. Benefiting from the presence of metal–metal bonds, supported atomic clusters can trigger synergistic effects among every metal atom, which contributes to achieving unique catalytic properties different from SACs and nanoparticles. However, the scalable and precise synthesis and atomic-level insights into the structure–properties relationship of supported atomic clusters is a great challenge. This perspective presents the latest progress of the synthesis of supported atomic clusters, highlights how the structure affects catalytic properties, and discusses the limitations as well as prospects.

Suggested Citation

  • Hongpan Rong & Shufang Ji & Jiatao Zhang & Dingsheng Wang & Yadong Li, 2020. "Synthetic strategies of supported atomic clusters for heterogeneous catalysis," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19571-6
    DOI: 10.1038/s41467-020-19571-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19571-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19571-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qianhong Wang & Keng Sang & Changwei Liu & Zhihua Zhang & Wenyao Chen & Te Ji & Lina Li & Cheng Lian & Gang Qian & Jing Zhang & Xinggui Zhou & Weikang Yuan & Xuezhi Duan, 2024. "Nanoparticles as an antidote for poisoned gold single-atom catalysts in sustainable propylene epoxidation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Chenhui Zhou & Jia Shi & Zhaoqi Dong & Lingyou Zeng & Yan Chen & Ying Han & Lu Li & Wenyu Zhang & Qinghua Zhang & Lin Gu & Fan Lv & Mingchuan Luo & Shaojun Guo, 2024. "Oxophilic gallium single atoms bridged ruthenium clusters for practical anion-exchange membrane electrolyzer," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Yufei Zhao & Priyank V. Kumar & Xin Tan & Xinxin Lu & Xiaofeng Zhu & Junjie Jiang & Jian Pan & Shibo Xi & Hui Ying Yang & Zhipeng Ma & Tao Wan & Dewei Chu & Wenjie Jiang & Sean C. Smith & Rose Amal & , 2022. "Modulating Pt-O-Pt atomic clusters with isolated cobalt atoms for enhanced hydrogen evolution catalysis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19571-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.