IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40777-x.html
   My bibliography  Save this article

Engineering microbial division of labor for plastic upcycling

Author

Listed:
  • Teng Bao

    (University of Illinois Urbana-Champaign
    University of Illinois Urbana-Champaign)

  • Yuanchao Qian

    (University of Illinois Urbana-Champaign
    University of Illinois Urbana-Champaign)

  • Yongping Xin

    (University of Illinois Urbana-Champaign
    University of Illinois Urbana-Champaign)

  • James J. Collins

    (Massachusetts Institute of Technology
    Harvard University
    Broad Institute of MIT and Harvard)

  • Ting Lu

    (University of Illinois Urbana-Champaign
    University of Illinois Urbana-Champaign
    University of Illinois Urbana-Champaign
    University of Illinois Urbana-Champaign)

Abstract

Plastic pollution is rapidly increasing worldwide, causing adverse impacts on the environment, wildlife and human health. One tempting solution to this crisis is upcycling plastics into products with engineered microorganisms; however, this remains challenging due to complexity in conversion. Here we present a synthetic microbial consortium that efficiently degrades polyethylene terephthalate hydrolysate and subsequently produces desired chemicals through division of labor. The consortium involves two Pseudomonas putida strains, specializing in terephthalic acid and ethylene glycol utilization respectively, to achieve complete substrate assimilation. Compared with its monoculture counterpart, the consortium exhibits reduced catabolic crosstalk and faster deconstruction, particularly when substrate concentrations are high or crude hydrolysate is used. It also outperforms monoculture when polyhydroxyalkanoates serves as a target product and confers flexible tuning through population modulation for cis-cis muconate synthesis. This work demonstrates engineered consortia as a promising, effective platform that may facilitate polymer upcycling and environmental sustainability.

Suggested Citation

  • Teng Bao & Yuanchao Qian & Yongping Xin & James J. Collins & Ting Lu, 2023. "Engineering microbial division of labor for plastic upcycling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40777-x
    DOI: 10.1038/s41467-023-40777-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40777-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40777-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hongyuan Lu & Daniel J. Diaz & Natalie J. Czarnecki & Congzhi Zhu & Wantae Kim & Raghav Shroff & Daniel J. Acosta & Bradley R. Alexander & Hannah O. Cole & Yan Zhang & Nathaniel A. Lynd & Andrew D. El, 2022. "Machine learning-aided engineering of hydrolases for PET depolymerization," Nature, Nature, vol. 604(7907), pages 662-667, April.
    2. V. Tournier & C. M. Topham & A. Gilles & B. David & C. Folgoas & E. Moya-Leclair & E. Kamionka & M.-L. Desrousseaux & H. Texier & S. Gavalda & M. Cot & E. Guémard & M. Dalibey & J. Nomme & G. Cioci & , 2020. "An engineered PET depolymerase to break down and recycle plastic bottles," Nature, Nature, vol. 580(7802), pages 216-219, April.
    3. Gottfried J. Palm & Lukas Reisky & Dominique Böttcher & Henrik Müller & Emil A. P. Michels & Miriam C. Walczak & Leona Berndt & Manfred S. Weiss & Uwe T. Bornscheuer & Gert Weber, 2019. "Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhen Yu & Yang Li & Yaoxin Zhang & Ping Xu & Chade Lv & Wulong Li & Bushra Maryam & Xianhua Liu & Swee Ching Tan, 2024. "Microplastic detection and remediation through efficient interfacial solar evaporation for immaculate water production," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Jonghyeok Shin & Siqi Liao & Nurzhan Kuanyshev & Yongping Xin & Chanwoo Kim & Ting Lu & Yong-Su Jin, 2024. "Compositional and temporal division of labor modulates mixed sugar fermentation by an engineered yeast consortium," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhuozhi Chen & Rongdi Duan & Yunjie Xiao & Yi Wei & Hanxiao Zhang & Xinzhao Sun & Shen Wang & Yingying Cheng & Xue Wang & Shanwei Tong & Yunxiao Yao & Cheng Zhu & Haitao Yang & Yanyan Wang & Zefang Wa, 2022. "Biodegradation of highly crystallized poly(ethylene terephthalate) through cell surface codisplay of bacterial PETase and hydrophobin," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Katarzyna Świderek & Susana Velasco-Lozano & Miquel À. Galmés & Ion Olazabal & Haritz Sardon & Fernando López-Gallego & Vicent Moliner, 2023. "Mechanistic studies of a lipase unveil effect of pH on hydrolysis products of small PET modules," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Anni Li & Yijie Sheng & Haiyang Cui & Minghui Wang & Luxuan Wu & Yibo Song & Rongrong Yang & Xiujuan Li & He Huang, 2023. "Discovery and mechanism-guided engineering of BHET hydrolases for improved PET recycling and upcycling," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Javier M. Hernández-Sancho & Arnaud Boudigou & Maria V. G. Alván-Vargas & Dekel Freund & Jenny Arnling Bååth & Peter Westh & Kenneth Jensen & Lianet Noda-García & Daniel C. Volke & Pablo I. Nikel, 2024. "A versatile microbial platform as a tunable whole-cell chemical sensor," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Trishnamoni Gautom & Dharmendra Dheeman & Colin Levy & Thomas Butterfield & Guadalupe Alvarez Gonzalez & Philip Roy & Lewis Caiger & Karl Fisher & Linus Johannissen & Neil Dixon, 2021. "Structural basis of terephthalate recognition by solute binding protein TphC," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    6. Hwaseok Hong & Dongwoo Ki & Hogyun Seo & Jiyoung Park & Jaewon Jang & Kyung-Jin Kim, 2023. "Discovery and rational engineering of PET hydrolase with both mesophilic and thermophilic PET hydrolase properties," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Amelia R. Bergeson & Ashli J. Silvera & Hal S. Alper, 2024. "Bottlenecks in biobased approaches to plastic degradation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. P. Konstantin Richter & Paula Blázquez-Sánchez & Ziyue Zhao & Felipe Engelberger & Christian Wiebeler & Georg Künze & Ronny Frank & Dana Krinke & Emanuele Frezzotti & Yuliia Lihanova & Patricia Falken, 2023. "Structure and function of the metagenomic plastic-degrading polyester hydrolase PHL7 bound to its product," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Yinglu Cui & Yanchun Chen & Jinyuan Sun & Tong Zhu & Hua Pang & Chunli Li & Wen-Chao Geng & Bian Wu, 2024. "Computational redesign of a hydrolase for nearly complete PET depolymerization at industrially relevant high-solids loading," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Erika Erickson & Japheth E. Gado & Luisana Avilán & Felicia Bratti & Richard K. Brizendine & Paul A. Cox & Raj Gill & Rosie Graham & Dong-Jin Kim & Gerhard König & William E. Michener & Saroj Poudel &, 2022. "Sourcing thermotolerant poly(ethylene terephthalate) hydrolase scaffolds from natural diversity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    12. Yuantao Peng & Jie Yang & Chenqiang Deng & Jin Deng & Li Shen & Yao Fu, 2023. "Acetolysis of waste polyethylene terephthalate for upcycling and life-cycle assessment study," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Xinlei Wei & Xue Yang & Congcong Hu & Qiangzi Li & Qianqian Liu & Yue Wu & Leipeng Xie & Xiao Ning & Fei Li & Tao Cai & Zhiguang Zhu & Yi-Heng P. Job Zhang & Yanfei Zhang & Xuejun Chen & Chun You, 2024. "ATP-free in vitro biotransformation of starch-derived maltodextrin into poly-3-hydroxybutyrate via acetyl-CoA," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Jun Qi & Yadong Du & Qi Yang & Na Jiang & Jiachun Li & Yi Ma & Yangjun Ma & Xin Zhao & Jieshan Qiu, 2023. "Energy-saving and product-oriented hydrogen peroxide electrosynthesis enabled by electrochemistry pairing and product engineering," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Elizabeth L. Bell & Gloria Rosetto & Morgan A. Ingraham & Kelsey J. Ramirez & Clarissa Lincoln & Ryan W. Clarke & Japheth E. Gado & Jacob L. Lilly & Katarzyna H. Kucharzyk & Erika Erickson & Gregg T. , 2024. "Natural diversity screening, assay development, and characterization of nylon-6 enzymatic depolymerization," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Gluth, A. & Xu, Z. & Fifield, L.S. & Yang, B., 2022. "Advancing biological processing for valorization of plastic wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    17. Kamali, Ali Reza & Li, Siyuan, 2023. "Molten salt-assisted valorization of waste PET plastics into nanostructured SnO2@terephthalic acid with excellent Li-ion storage performance," Applied Energy, Elsevier, vol. 334(C).
    18. Qing Ma & Yongjun Gao & Bo Sun & Jianlong Du & Hong Zhang & Ding Ma, 2024. "Grave-to-cradle dry reforming of plastics via Joule heating," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Noelia Ferruz & Steffen Schmidt & Birte Höcker, 2022. "ProtGPT2 is a deep unsupervised language model for protein design," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Mark J. G. Bakkers & Tina Ritschel & Machteld Tiemessen & Jacobus Dijkman & Angelo A. Zuffianò & Xiaodi Yu & Daan Overveld & Lam Le & Richard Voorzaat & Marlies M. Haaren & Martijn Man & Sem Tamara & , 2024. "Efficacious human metapneumovirus vaccine based on AI-guided engineering of a closed prefusion trimer," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40777-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.