Evolved cytidine and adenine base editors with high precision and minimized off-target activity by a continuous directed evolution system in mammalian cells
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-52483-3
Download full text from publisher
References listed on IDEAS
- Jungjoon K. Lee & Euihwan Jeong & Joonsun Lee & Minhee Jung & Eunji Shin & Young-hoon Kim & Kangin Lee & Inyoung Jung & Daesik Kim & Seokjoong Kim & Jin-Soo Kim, 2018. "Directed evolution of CRISPR-Cas9 to increase its specificity," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
- Julian Grünewald & Ronghao Zhou & Sara P. Garcia & Sowmya Iyer & Caleb A. Lareau & Martin J. Aryee & J. Keith Joung, 2019. "Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors," Nature, Nature, vol. 569(7756), pages 433-437, May.
- Junhao Fu & Qing Li & Xiaoyu Liu & Tianxiang Tu & Xiujuan Lv & Xidi Yin & Jineng Lv & Zongming Song & Jia Qu & Jinwei Zhang & Jinsong Li & Feng Gu, 2021. "Human cell based directed evolution of adenine base editors with improved efficiency," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wei Qin & Fang Liang & Sheng-Jia Lin & Cassidy Petree & Kevin Huang & Yu Zhang & Lin Li & Pratishtha Varshney & Philippe Mourrain & Yanmei Liu & Gaurav K. Varshney, 2024. "ABE-ultramax for high-efficiency biallelic adenine base editing in zebrafish," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Qiao Liu & Di He & Lei Xie, 2019. "Prediction of off-target specificity and cell-specific fitness of CRISPR-Cas System using attention boosted deep learning and network-based gene feature," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-22, October.
- Péter István Kulcsár & András Tálas & Zoltán Ligeti & Sarah Laura Krausz & Ervin Welker, 2022. "SuperFi-Cas9 exhibits remarkable fidelity but severely reduced activity yet works effectively with ABE8e," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Burcu Bestas & Sandra Wimberger & Dmitrii Degtev & Alexandra Madsen & Antje K. Rottner & Fredrik Karlsson & Sergey Naumenko & Megan Callahan & Julia Liz Touza & Margherita Francescatto & Carl Ivar Möl, 2023. "A Type II-B Cas9 nuclease with minimized off-targets and reduced chromosomal translocations in vivo," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Akiko Tomita & Hiroyuki Sasanuma & Tomoo Owa & Yuka Nakazawa & Mayuko Shimada & Takahiro Fukuoka & Tomoo Ogi & Shinichiro Nakada, 2023. "Inducing multiple nicks promotes interhomolog homologous recombination to correct heterozygous mutations in somatic cells," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
- Péter István Kulcsár & András Tálas & Zoltán Ligeti & Eszter Tóth & Zsófia Rakvács & Zsuzsa Bartos & Sarah Laura Krausz & Ágnes Welker & Vanessza Laura Végi & Krisztina Huszár & Ervin Welker, 2023. "A cleavage rule for selection of increased-fidelity SpCas9 variants with high efficiency and no detectable off-targets," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
- Pierre Aldag & Marius Rutkauskas & Julene Madariaga-Marcos & Inga Songailiene & Tomas Sinkunas & Felix Kemmerich & Dominik Kauert & Virginijus Siksnys & Ralf Seidel, 2023. "Dynamic interplay between target search and recognition for a Type I CRISPR-Cas system," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Giulia I. Corsi & Kunli Qu & Ferhat Alkan & Xiaoguang Pan & Yonglun Luo & Jan Gorodkin, 2022. "CRISPR/Cas9 gRNA activity depends on free energy changes and on the target PAM context," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- Mu Li & Aaron Zhong & Youjun Wu & Mega Sidharta & Michael Beaury & Xiaolan Zhao & Lorenz Studer & Ting Zhou, 2022. "Transient inhibition of p53 enhances prime editing and cytosine base-editing efficiencies in human pluripotent stem cells," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Aaron A. Smargon & Assael A. Madrigal & Brian A. Yee & Kevin D. Dong & Jasmine R. Mueller & Gene W. Yeo, 2022. "Crosstalk between CRISPR-Cas9 and the human transcriptome," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
- Panagiotis Antoniou & Giulia Hardouin & Pierre Martinucci & Giacomo Frati & Tristan Felix & Anne Chalumeau & Letizia Fontana & Jeanne Martin & Cecile Masson & Megane Brusson & Giulia Maule & Marion Ro, 2022. "Base-editing-mediated dissection of a γ-globin cis-regulatory element for the therapeutic reactivation of fetal hemoglobin expression," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
- Shuqian Zhang & Liting Song & Bo Yuan & Cheng Zhang & Jixin Cao & Jinlong Chen & Jiayi Qiu & Yilin Tai & Jingqi Chen & Zilong Qiu & Xing-Ming Zhao & Tian-Lin Cheng, 2023. "TadA reprogramming to generate potent miniature base editors with high precision," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Dawn G. L. Thean & Hoi Yee Chu & John H. C. Fong & Becky K. C. Chan & Peng Zhou & Cynthia C. S. Kwok & Yee Man Chan & Silvia Y. L. Mak & Gigi C. G. Choi & Joshua W. K. Ho & Zongli Zheng & Alan S. L. W, 2022. "Machine learning-coupled combinatorial mutagenesis enables resource-efficient engineering of CRISPR-Cas9 genome editor activities," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- Junhao Fu & Qing Li & Xiaoyu Liu & Tianxiang Tu & Xiujuan Lv & Xidi Yin & Jineng Lv & Zongming Song & Jia Qu & Jinwei Zhang & Jinsong Li & Feng Gu, 2021. "Human cell based directed evolution of adenine base editors with improved efficiency," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
- Jian Wang & Ke Wang & Zhe Deng & Zhiyu Zhong & Guo Sun & Qing Mei & Fuling Zhou & Zixin Deng & Yuhui Sun, 2024. "Engineered cytosine base editor enabling broad-scope and high-fidelity gene editing in Streptomyces," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Yanbo Wang & W. Taylor Cottle & Haobo Wang & Momcilo Gavrilov & Roger S. Zou & Minh-Tam Pham & Srinivasan Yegnasubramanian & Scott Bailey & Taekjip Ha, 2022. "Achieving single nucleotide sensitivity in direct hybridization genome imaging," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Jianli Tao & Daniel E. Bauer & Roberto Chiarle, 2023. "Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
- Shuqian Zhang & Bo Yuan & Jixin Cao & Liting Song & Jinlong Chen & Jiayi Qiu & Zilong Qiu & Xing-Ming Zhao & Jingqi Chen & Tian-Lin Cheng, 2023. "TadA orthologs enable both cytosine and adenine editing of base editors," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- András Tálas & Dorottya A. Simon & Péter I. Kulcsár & Éva Varga & Sarah L. Krausz & Ervin Welker, 2021. "BEAR reveals that increased fidelity variants can successfully reduce the mismatch tolerance of adenine but not cytosine base editors," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52483-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.