IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52289-3.html
   My bibliography  Save this article

Rapid context inference in a thalamocortical model using recurrent neural networks

Author

Listed:
  • Wei-Long Zheng

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University
    Massachusetts Institute of Technology)

  • Zhongxuan Wu

    (The University of Texas at Austin)

  • Ali Hummos

    (Massachusetts Institute of Technology)

  • Guangyu Robert Yang

    (Massachusetts Institute of Technology
    Inc.)

  • Michael M. Halassa

    (Tufts University School of Medicine
    Tufts University School of Medicine)

Abstract

Cognitive flexibility is a fundamental ability that enables humans and animals to exhibit appropriate behaviors in various contexts. The thalamocortical interactions between the prefrontal cortex (PFC) and the mediodorsal thalamus (MD) have been identified as crucial for inferring temporal context, a critical component of cognitive flexibility. However, the neural mechanism responsible for context inference remains unknown. To address this issue, we propose a PFC-MD neural circuit model that utilizes a Hebbian plasticity rule to support rapid, online context inference. Specifically, the model MD thalamus can infer temporal contexts from prefrontal inputs within a few trials. This is achieved through the use of PFC-to-MD synaptic plasticity with pre-synaptic traces and adaptive thresholding, along with winner-take-all normalization in the MD. Furthermore, our model thalamus gates context-irrelevant neurons in the PFC, thus facilitating continual learning. We evaluate our model performance by having it sequentially learn various cognitive tasks. Incorporating an MD-like component alleviates catastrophic forgetting of previously learned contexts and demonstrates the transfer of knowledge to future contexts. Our work provides insight into how biological properties of thalamocortical circuits can be leveraged to achieve rapid context inference and continual learning.

Suggested Citation

  • Wei-Long Zheng & Zhongxuan Wu & Ali Hummos & Guangyu Robert Yang & Michael M. Halassa, 2024. "Rapid context inference in a thalamocortical model using recurrent neural networks," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52289-3
    DOI: 10.1038/s41467-024-52289-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52289-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52289-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Arghya Mukherjee & Norman H. Lam & Ralf D. Wimmer & Michael M. Halassa, 2021. "Thalamic circuits for independent control of prefrontal signal and noise," Nature, Nature, vol. 600(7887), pages 100-104, December.
    2. Juan A. Gallego & Matthew G. Perich & Stephanie N. Naufel & Christian Ethier & Sara A. Solla & Lee E. Miller, 2018. "Cortical population activity within a preserved neural manifold underlies multiple motor behaviors," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    3. Valerio Mante & David Sussillo & Krishna V. Shenoy & William T. Newsome, 2013. "Context-dependent computation by recurrent dynamics in prefrontal cortex," Nature, Nature, vol. 503(7474), pages 78-84, November.
    4. Gido M. Ven & Hava T. Siegelmann & Andreas S. Tolias, 2020. "Brain-inspired replay for continual learning with artificial neural networks," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    5. James B. Heald & Máté Lengyel & Daniel M. Wolpert, 2021. "Contextual inference underlies the learning of sensorimotor repertoires," Nature, Nature, vol. 600(7889), pages 489-493, December.
    6. Junya Hirokawa & Alexander Vaughan & Paul Masset & Torben Ott & Adam Kepecs, 2019. "Frontal cortex neuron types categorically encode single decision variables," Nature, Nature, vol. 576(7787), pages 446-451, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joao Barbosa & Rémi Proville & Chris C. Rodgers & Michael R. DeWeese & Srdjan Ostojic & Yves Boubenec, 2023. "Early selection of task-relevant features through population gating," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Jan Weber & Anne-Kristin Solbakk & Alejandro O. Blenkmann & Anais Llorens & Ingrid Funderud & Sabine Leske & Pål Gunnar Larsson & Jugoslav Ivanovic & Robert T. Knight & Tor Endestad & Randolph F. Helf, 2024. "Ramping dynamics and theta oscillations reflect dissociable signatures during rule-guided human behavior," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Nagaraj R. Mahajan & Shreesh P. Mysore, 2022. "Donut-like organization of inhibition underlies categorical neural responses in the midbrain," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Joanna C. Chang & Matthew G. Perich & Lee E. Miller & Juan A. Gallego & Claudia Clopath, 2024. "De novo motor learning creates structure in neural activity that shapes adaptation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Márton Albert Hajnal & Duy Tran & Zsombor Szabó & Andrea Albert & Karen Safaryan & Michael Einstein & Mauricio Vallejo Martelo & Pierre-Olivier Polack & Peyman Golshani & Gergő Orbán, 2024. "Shifts in attention drive context-dependent subspace encoding in anterior cingulate cortex in mice during decision making," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Yihan Wang & Qian-Quan Sun, 2024. "A prefrontal motor circuit initiates persistent movement," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Yue Liu & Xiao-Jing Wang, 2024. "Flexible gating between subspaces in a neural network model of internally guided task switching," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    8. Ege Altan & Sara A Solla & Lee E Miller & Eric J Perreault, 2021. "Estimating the dimensionality of the manifold underlying multi-electrode neural recordings," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-23, November.
    9. Kei Oyama & Kei Majima & Yuji Nagai & Yukiko Hori & Toshiyuki Hirabayashi & Mark A. G. Eldridge & Koki Mimura & Naohisa Miyakawa & Atsushi Fujimoto & Yuki Hori & Haruhiko Iwaoki & Ken-ichi Inoue & Ric, 2024. "Distinct roles of monkey OFC-subcortical pathways in adaptive behavior," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Georgia Koppe & Hazem Toutounji & Peter Kirsch & Stefanie Lis & Daniel Durstewitz, 2019. "Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-35, August.
    11. Wenqi Chen & Jiejunyi Liang & Qiyun Wu & Yunyun Han, 2024. "Anterior cingulate cortex provides the neural substrates for feedback-driven iteration of decision and value representation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Pierre O. Boucher & Tian Wang & Laura Carceroni & Gary Kane & Krishna V. Shenoy & Chandramouli Chandrasekaran, 2023. "Initial conditions combine with sensory evidence to induce decision-related dynamics in premotor cortex," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    13. Rishi Rajalingham & Aída Piccato & Mehrdad Jazayeri, 2022. "Recurrent neural networks with explicit representation of dynamic latent variables can mimic behavioral patterns in a physical inference task," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Wan-Yu Shih & Hsiang-Yu Yu & Cheng-Chia Lee & Chien-Chen Chou & Chien Chen & Paul W. Glimcher & Shih-Wei Wu, 2023. "Electrophysiological population dynamics reveal context dependencies during decision making in human frontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    15. Wenyi Zhang & Yang Xie & Tianming Yang, 2022. "Reward salience but not spatial attention dominates the value representation in the orbitofrontal cortex," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Nir Even-Chen & Blue Sheffer & Saurabh Vyas & Stephen I Ryu & Krishna V Shenoy, 2019. "Structure and variability of delay activity in premotor cortex," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-17, February.
    17. Javier G. Orlandi & Mohammad Abdolrahmani & Ryo Aoki & Dmitry R. Lyamzin & Andrea Benucci, 2023. "Distributed context-dependent choice information in mouse posterior cortex," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    18. Nir Moneta & Mona M. Garvert & Hauke R. Heekeren & Nicolas W. Schuck, 2023. "Task state representations in vmPFC mediate relevant and irrelevant value signals and their behavioral influence," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    19. Huanyuan Zhou & KongFatt Wong-Lin & Da-Hui Wang, 2018. "Parallel Excitatory and Inhibitory Neural Circuit Pathways Underlie Reward-Based Phasic Neural Responses," Complexity, Hindawi, vol. 2018, pages 1-20, April.
    20. Benjamin R Cowley & Matthew A Smith & Adam Kohn & Byron M Yu, 2016. "Stimulus-Driven Population Activity Patterns in Macaque Primary Visual Cortex," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-31, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52289-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.