IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v600y2021i7887d10.1038_s41586-021-04056-3.html
   My bibliography  Save this article

Thalamic circuits for independent control of prefrontal signal and noise

Author

Listed:
  • Arghya Mukherjee

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Norman H. Lam

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Ralf D. Wimmer

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Michael M. Halassa

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

Abstract

Interactions between the mediodorsal thalamus and the prefrontal cortex are critical for cognition. Studies in humans indicate that these interactions may resolve uncertainty in decision-making1, but the precise mechanisms are unknown. Here we identify two distinct mediodorsal projections to the prefrontal cortex that have complementary mechanistic roles in decision-making under uncertainty. Specifically, we found that a dopamine receptor (D2)-expressing projection amplifies prefrontal signals when task inputs are sparse and a kainate receptor (GRIK4) expressing-projection suppresses prefrontal noise when task inputs are dense but conflicting. Collectively, our data suggest that there are distinct brain mechanisms for handling uncertainty due to low signals versus uncertainty due to high noise, and provide a mechanistic entry point for correcting decision-making abnormalities in disorders that have a prominent prefrontal component2–6.

Suggested Citation

  • Arghya Mukherjee & Norman H. Lam & Ralf D. Wimmer & Michael M. Halassa, 2021. "Thalamic circuits for independent control of prefrontal signal and noise," Nature, Nature, vol. 600(7887), pages 100-104, December.
  • Handle: RePEc:nat:nature:v:600:y:2021:i:7887:d:10.1038_s41586-021-04056-3
    DOI: 10.1038/s41586-021-04056-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-04056-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-04056-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katharina Ziegler & Ross Folkard & Antonio J. Gonzalez & Jan Burghardt & Sailaja Antharvedi-Goda & Jesus Martin-Cortecero & Emilio Isaías-Camacho & Sanjeev Kaushalya & Linette Liqi Tan & Thomas Kuner , 2023. "Primary somatosensory cortex bidirectionally modulates sensory gain and nociceptive behavior in a layer-specific manner," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:600:y:2021:i:7887:d:10.1038_s41586-021-04056-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.