IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52259-9.html
   My bibliography  Save this article

Neuromorphic intermediate representation: A unified instruction set for interoperable brain-inspired computing

Author

Listed:
  • Jens E. Pedersen

    (KTH Royal Institute of Technology)

  • Steven Abreu

    (University of Groningen
    University of Groningen)

  • Matthias Jobst

    (Technische Universität Dresden
    Centre for Tactile Internet with Human-in-the-Loop)

  • Gregor Lenz

    (Neurobus)

  • Vittorio Fra

    (Politecnico di Torino)

  • Felix Christian Bauer

    (SynSense)

  • Dylan Richard Muir

    (SynSense)

  • Peng Zhou

    (LuxiTech Co. Ltd.)

  • Bernhard Vogginger

    (Technische Universität Dresden)

  • Kade Heckel

    (University of Cambridge)

  • Gianvito Urgese

    (Politecnico di Torino)

  • Sadasivan Shankar

    (Stanford University
    SLAC National Laboratory)

  • Terrence C. Stewart

    (National Research Council)

  • Sadique Sheik

    (SynSense)

  • Jason K. Eshraghian

    (University of California)

Abstract

Spiking neural networks and neuromorphic hardware platforms that simulate neuronal dynamics are getting wide attention and are being applied to many relevant problems using Machine Learning. Despite a well-established mathematical foundation for neural dynamics, there exists numerous software and hardware solutions and stacks whose variability makes it difficult to reproduce findings. Here, we establish a common reference frame for computations in digital neuromorphic systems, titled Neuromorphic Intermediate Representation (NIR). NIR defines a set of computational and composable model primitives as hybrid systems combining continuous-time dynamics and discrete events. By abstracting away assumptions around discretization and hardware constraints, NIR faithfully captures the computational model, while bridging differences between the evaluated implementation and the underlying mathematical formalism. NIR supports an unprecedented number of neuromorphic systems, which we demonstrate by reproducing three spiking neural network models of different complexity across 7 neuromorphic simulators and 4 digital hardware platforms. NIR decouples the development of neuromorphic hardware and software, enabling interoperability between platforms and improving accessibility to multiple neuromorphic technologies. We believe that NIR is a key next step in brain-inspired hardware-software co-evolution, enabling research towards the implementation of energy efficient computational principles of nervous systems. NIR is available at neuroir.org

Suggested Citation

  • Jens E. Pedersen & Steven Abreu & Matthias Jobst & Gregor Lenz & Vittorio Fra & Felix Christian Bauer & Dylan Richard Muir & Peng Zhou & Bernhard Vogginger & Kade Heckel & Gianvito Urgese & Sadasivan , 2024. "Neuromorphic intermediate representation: A unified instruction set for interoperable brain-inspired computing," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52259-9
    DOI: 10.1038/s41467-024-52259-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52259-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52259-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Federico Echenique & Mat'ias N'u~nez, 2022. "Price & Choose," Papers 2212.05650, arXiv.org, revised Apr 2023.
    2. Weier Wan & Rajkumar Kubendran & Clemens Schaefer & Sukru Burc Eryilmaz & Wenqiang Zhang & Dabin Wu & Stephen Deiss & Priyanka Raina & He Qian & Bin Gao & Siddharth Joshi & Huaqiang Wu & H.-S. Philip , 2022. "A compute-in-memory chip based on resistive random-access memory," Nature, Nature, vol. 608(7923), pages 504-512, August.
    3. Youhui Zhang & Peng Qu & Yu Ji & Weihao Zhang & Guangrong Gao & Guanrui Wang & Sen Song & Guoqi Li & Wenguang Chen & Weimin Zheng & Feng Chen & Jing Pei & Rong Zhao & Mingguo Zhao & Luping Shi, 2020. "A system hierarchy for brain-inspired computing," Nature, Nature, vol. 586(7829), pages 378-384, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Djohan Bonnet & Tifenn Hirtzlin & Atreya Majumdar & Thomas Dalgaty & Eduardo Esmanhotto & Valentina Meli & Niccolo Castellani & Simon Martin & Jean-François Nodin & Guillaume Bourgeois & Jean-Michel P, 2023. "Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Simone D’Agostino & Filippo Moro & Tristan Torchet & Yiğit Demirağ & Laurent Grenouillet & Niccolò Castellani & Giacomo Indiveri & Elisa Vianello & Melika Payvand, 2024. "DenRAM: neuromorphic dendritic architecture with RRAM for efficient temporal processing with delays," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Xiangjin Wu & Asir Intisar Khan & Hengyuan Lee & Chen-Feng Hsu & Huairuo Zhang & Heshan Yu & Neel Roy & Albert V. Davydov & Ichiro Takeuchi & Xinyu Bao & H.-S. Philip Wong & Eric Pop, 2024. "Novel nanocomposite-superlattices for low energy and high stability nanoscale phase-change memory," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Herbert Jaeger & Beatriz Noheda & Wilfred G. Wiel, 2023. "Toward a formal theory for computing machines made out of whatever physics offers," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Helin Yang & Kwok-Yan Lam & Liang Xiao & Zehui Xiong & Hao Hu & Dusit Niyato & H. Vincent Poor, 2022. "Lead federated neuromorphic learning for wireless edge artificial intelligence," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Malte J. Rasch & Fabio Carta & Omobayode Fagbohungbe & Tayfun Gokmen, 2024. "Fast and robust analog in-memory deep neural network training," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Yijun Li & Jianshi Tang & Bin Gao & Jian Yao & Anjunyi Fan & Bonan Yan & Yuchao Yang & Yue Xi & Yuankun Li & Jiaming Li & Wen Sun & Yiwei Du & Zhengwu Liu & Qingtian Zhang & Song Qiu & Qingwen Li & He, 2023. "Monolithic three-dimensional integration of RRAM-based hybrid memory architecture for one-shot learning," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Malte J. Rasch & Charles Mackin & Manuel Gallo & An Chen & Andrea Fasoli & Frédéric Odermatt & Ning Li & S. R. Nandakumar & Pritish Narayanan & Hsinyu Tsai & Geoffrey W. Burr & Abu Sebastian & Vijay N, 2023. "Hardware-aware training for large-scale and diverse deep learning inference workloads using in-memory computing-based accelerators," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Peng Chen & Fenghao Liu & Peng Lin & Peihong Li & Yu Xiao & Bihua Zhang & Gang Pan, 2023. "Open-loop analog programmable electrochemical memory array," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Long Liu & Di Wang & Dandan Wang & Yan Sun & Huai Lin & Xiliang Gong & Yifan Zhang & Ruifeng Tang & Zhihong Mai & Zhipeng Hou & Yumeng Yang & Peng Li & Lan Wang & Qing Luo & Ling Li & Guozhong Xing & , 2024. "Domain wall magnetic tunnel junction-based artificial synapses and neurons for all-spin neuromorphic hardware," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Yongxiang Li & Shiqing Wang & Ke Yang & Yuchao Yang & Zhong Sun, 2024. "An emergent attractor network in a passive resistive switching circuit," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Ziqi Gao & Chenran Jiang & Jiawen Zhang & Xiaosen Jiang & Lanqing Li & Peilin Zhao & Huanming Yang & Yong Huang & Jia Li, 2023. "Hierarchical graph learning for protein–protein interaction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Han Zhao & Zhengwu Liu & Jianshi Tang & Bin Gao & Qi Qin & Jiaming Li & Ying Zhou & Peng Yao & Yue Xi & Yudeng Lin & He Qian & Huaqiang Wu, 2023. "Energy-efficient high-fidelity image reconstruction with memristor arrays for medical diagnosis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Fadi Jebali & Atreya Majumdar & Clément Turck & Kamel-Eddine Harabi & Mathieu-Coumba Faye & Eloi Muhr & Jean-Pierre Walder & Oleksandr Bilousov & Amadéo Michaud & Elisa Vianello & Tifenn Hirtzlin & Fr, 2024. "Powering AI at the edge: A robust, memristor-based binarized neural network with near-memory computing and miniaturized solar cell," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Thomas Dalgaty & Filippo Moro & Yiğit Demirağ & Alessio Pra & Giacomo Indiveri & Elisa Vianello & Melika Payvand, 2024. "Mosaic: in-memory computing and routing for small-world spike-based neuromorphic systems," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Jaeseoung Park & Ashwani Kumar & Yucheng Zhou & Sangheon Oh & Jeong-Hoon Kim & Yuhan Shi & Soumil Jain & Gopabandhu Hota & Erbin Qiu & Amelie L. Nagle & Ivan K. Schuller & Catherine D. Schuman & Gert , 2024. "Multi-level, forming and filament free, bulk switching trilayer RRAM for neuromorphic computing at the edge," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Lee, Geun Ho & Kim, Tae-Hyeon & Youn, Sangwook & Park, Jinwoo & Kim, Sungjoon & Kim, Hyungjin, 2023. "Low-fluctuation nonlinear model using incremental step pulse programming with memristive devices," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    18. Mingrui Jiang & Keyi Shan & Chengping He & Can Li, 2023. "Efficient combinatorial optimization by quantum-inspired parallel annealing in analogue memristor crossbar," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Fernando Aguirre & Abu Sebastian & Manuel Gallo & Wenhao Song & Tong Wang & J. Joshua Yang & Wei Lu & Meng-Fan Chang & Daniele Ielmini & Yuchao Yang & Adnan Mehonic & Anthony Kenyon & Marco A. Villena, 2024. "Hardware implementation of memristor-based artificial neural networks," Nature Communications, Nature, vol. 15(1), pages 1-40, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52259-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.