IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v217y2023ics0960148123010534.html
   My bibliography  Save this article

One-step conversion of acidified oil to biodiesel by novel bifunctional SrZr1-xFexO3 catalyst

Author

Listed:
  • Zhang, Yujiao
  • Niu, Shengli
  • Xia, Sunwen
  • Liu, Sitong
  • Liu, Jisen

Abstract

The novel heterogeneous catalysts of SrZr1-xFexO3 (x = 0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30 or 0.40) with acid-base bifunctional property are prepared through the sol-gel method and applied in catalyzing transesterification and esterification from acidified oil to produce biodiesel. The substitution of Zr by Fe in the SrZrO3 perovskite results in the lattice distortion to generate abundant surface oxygen vacancies. Also, the enhancement of electron density on active sites improves the acidity and basicity of catalyst to construct the acid-base pair sites for high efficiency of biodiesel production. The SrZr0.75Fe0.25O3 catalyst shows the strongest catalytic activity and the maximum FAME yield of 99.5% is achieved at the reaction temperature of 178 °C, catalyst amount of 4.5 wt%, methanol to oil molar ratio of 19:1 and reaction duration of 3.4 h through optimizing reaction parameters by convolutional neural network. The catalyst exhibits strong acid resistance and the FAME yield of 93.9% is achieved with 30 wt% oleic acid addition, where methanol is readily adsorbed to Sr site for transesterification and free fatty acids are readily adsorbed to Fe site for esterification. In addition, the SrZr0.75Fe0.25O3 catalyst shows satisfactory reusability and the FAME yield of 96.2% is maintained for the fifth reused cycle.

Suggested Citation

  • Zhang, Yujiao & Niu, Shengli & Xia, Sunwen & Liu, Sitong & Liu, Jisen, 2023. "One-step conversion of acidified oil to biodiesel by novel bifunctional SrZr1-xFexO3 catalyst," Renewable Energy, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123010534
    DOI: 10.1016/j.renene.2023.119139
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123010534
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119139?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xia, Shaige & Hu, Yongjie & Chen, Chao & Tao, Junyu & Yan, Beibei & Li, Wanqing & Zhu, Guangbin & Cheng, Zhanjun & Chen, Guanyi, 2022. "Electrolytic transesterification of waste cooking oil using magnetic Co/Fe–Ca based catalyst derived from waste shells: A promising approach towards sustainable biodiesel production," Renewable Energy, Elsevier, vol. 200(C), pages 1286-1299.
    2. Lee, H.V. & Juan, J.C. & Taufiq-Yap, Y.H., 2015. "Preparation and application of binary acid–base CaO–La2O3 catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 74(C), pages 124-132.
    3. Ning, Yilin & Niu, Shengli & Wang, Yongzheng & Zhao, Jianli & Lu, Chunmei, 2021. "Sono-modified halloysite nanotube with NaAlO2 as novel heterogeneous catalyst for biodiesel production: Optimization via GA_BP neural network," Renewable Energy, Elsevier, vol. 175(C), pages 391-404.
    4. Zhang, Heng & Li, Hu & Hu, Yulin & Venkateswara Rao, Kasanneni Tirumala & Xu, Chunbao (Charles) & Yang, Song, 2019. "Advances in production of bio-based ester fuels with heterogeneous bifunctional catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    5. Zhang, Yujiao & Niu, Shengli & Hao, Yanan & Liu, Sitong & Liu, Jisen & Han, Kuihua & Wang, Yongzheng & Lu, Chunmei, 2023. "Preparation of SrZrAl multiple oxide catalyst for produce biodiesel from acidified palm oil," Renewable Energy, Elsevier, vol. 207(C), pages 116-127.
    6. Li, Ying & Niu, Shengli & Hao, Yanan & Zhou, Wenbo & Wang, Jun & Liu, Jiangwei, 2022. "Role of oxygen vacancy on activity of Fe-doped SrTiO3 perovskite bifunctional catalysts for biodiesel production," Renewable Energy, Elsevier, vol. 199(C), pages 1258-1271.
    7. Yu, Hewei & Cao, Yunlong & Li, Heyao & Zhao, Gaiju & Zhang, Xingyu & Cheng, Shen & Wei, Wei, 2021. "An efficient heterogeneous acid catalyst derived from waste ginger straw for biodiesel production," Renewable Energy, Elsevier, vol. 176(C), pages 533-542.
    8. Jinbo Peng & Duanyun Cao & Zhili He & Jing Guo & Prokop Hapala & Runze Ma & Bowei Cheng & Ji Chen & Wen Jun Xie & Xin-Zheng Li & Pavel Jelínek & Li-Mei Xu & Yi Qin Gao & En-Ge Wang & Ying Jiang, 2018. "The effect of hydration number on the interfacial transport of sodium ions," Nature, Nature, vol. 557(7707), pages 701-705, May.
    9. Kumar, Dipesh & Singh, Bhaskar, 2019. "BaZrO3 and Cs-BaZrO3 catalysed transesterification of Millettia Pinnata oil and optimisation of reaction variables by response surface Box-Behnken design," Renewable Energy, Elsevier, vol. 133(C), pages 411-421.
    10. Jinbo Peng & Duanyun Cao & Zhili He & Jing Guo & Prokop Hapala & Runze Ma & Bowei Cheng & Ji Chen & Wen Jun Xie & Xin-Zheng Li & Pavel Jelínek & Li-Mei Xu & Yi Qin Gao & En-Ge Wang & Ying Jiang, 2018. "Publisher Correction: The effect of hydration number on the interfacial transport of sodium ions," Nature, Nature, vol. 563(7729), pages 18-18, November.
    11. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2012. "The effects of water on biodiesel production and refining technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3456-3470.
    12. Li, Ying & Niu, Shengli & Wang, Jun & Zhou, Wenbo & Wang, Yongzheng & Han, Kuihua & Lu, Chunmei, 2022. "Mesoporous SrTiO3 perovskite as a heterogeneous catalyst for biodiesel production: Experimental and DFT studies," Renewable Energy, Elsevier, vol. 184(C), pages 164-175.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    2. Rattanaphra, Dussadee & Soodjit, Phansiri & Thanapimmetha, Anusith & Saisriyoot, Maythee & Srinophakun, Penjit, 2019. "Synthesis, characterization and catalytic activity studies of lanthanum oxide from Thai monazite ore for biodiesel production," Renewable Energy, Elsevier, vol. 131(C), pages 1128-1137.
    3. Rui Shi & Anthony J. Cooper & Hajime Tanaka, 2023. "Impact of hierarchical water dipole orderings on the dynamics of aqueous salt solutions," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Chunyi Zhang & Shuwen Yue & Athanassios Z. Panagiotopoulos & Michael L. Klein & Xifan Wu, 2022. "Dissolving salt is not equivalent to applying a pressure on water," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    5. Li, Ying & Niu, Shengli & Hao, Yanan & Zhou, Wenbo & Wang, Jun & Liu, Jiangwei, 2022. "Role of oxygen vacancy on activity of Fe-doped SrTiO3 perovskite bifunctional catalysts for biodiesel production," Renewable Energy, Elsevier, vol. 199(C), pages 1258-1271.
    6. Zhang, Yujiao & Niu, Shengli & Hao, Yanan & Liu, Sitong & Liu, Jisen & Han, Kuihua & Wang, Yongzheng & Lu, Chunmei, 2023. "Preparation of SrZrAl multiple oxide catalyst for produce biodiesel from acidified palm oil," Renewable Energy, Elsevier, vol. 207(C), pages 116-127.
    7. El yaakouby, Ichraq & Rhrissi, Ilyass & Abouliatim, Youness & Hlaibi, Miloudi & Kamil, Noureddine, 2023. "Moroccan sardine scales as a novel and renewable source of heterogeneous catalyst for biodiesel production using palm fatty acid distillate," Renewable Energy, Elsevier, vol. 217(C).
    8. Maleki, Basir & Ashraf Talesh, S. Siamak, 2022. "Optimization of ZnO incorporation to αFe2O3 nanoparticles as an efficient catalyst for biodiesel production in a sonoreactor: Application on the CI engine," Renewable Energy, Elsevier, vol. 182(C), pages 43-59.
    9. Yadav, Nidhi & Yadav, Gaurav & Ahmaruzzaman, Md., 2023. "Fabrication of surface-modified dual waste-derived biochar for biodiesel production by microwave-assisted esterification of oleic acid: Optimization, kinetics, and mechanistic studies," Renewable Energy, Elsevier, vol. 218(C).
    10. Safaripour, Maryam & Saidi, Majid & Nodeh, Hamid Rashidi, 2023. "Synthesis and application of barium tin oxide-reduced graphene oxide nanocomposite as a highly stable heterogeneous catalyst for the biodiesel production," Renewable Energy, Elsevier, vol. 217(C).
    11. Mohammad Anwar & Mohammad G. Rasul & Nanjappa Ashwath & Md Mofijur Rahman, 2018. "Optimisation of Second-Generation Biodiesel Production from Australian Native Stone Fruit Oil Using Response Surface Method," Energies, MDPI, vol. 11(10), pages 1-18, September.
    12. Li, Ying & Niu, Shengli & Wang, Jun & Zhou, Wenbo & Wang, Yongzheng & Han, Kuihua & Lu, Chunmei, 2022. "Mesoporous SrTiO3 perovskite as a heterogeneous catalyst for biodiesel production: Experimental and DFT studies," Renewable Energy, Elsevier, vol. 184(C), pages 164-175.
    13. Melero, Juan A. & Bautista, L. Fernando & Morales, Gabriel & Iglesias, Jose & Sánchez-Vázquez, Rebeca, 2015. "Acid-catalyzed production of biodiesel over arenesulfonic SBA-15: Insights into the role of water in the reaction network," Renewable Energy, Elsevier, vol. 75(C), pages 425-432.
    14. Zhang, Heng & Li, Hu & Hu, Yulin & Venkateswara Rao, Kasanneni Tirumala & Xu, Chunbao (Charles) & Yang, Song, 2019. "Advances in production of bio-based ester fuels with heterogeneous bifunctional catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    15. Maleki, Basir & Esmaeili, Hossein, 2023. "Ultrasound-assisted conversion of waste frying oil into biodiesel using Al-doped ZnO nanocatalyst: Box-Behnken design-based optimization," Renewable Energy, Elsevier, vol. 209(C), pages 10-26.
    16. Wang, Xiao-Man & Zeng, Ya-Nan & Wang, Yu-Ran & Wang, Fu-Ping & Wang, Yi-Tong & Li, Jun-Guo & Ji, Rui & Kang, Le-Le & Yu, Qing & Liu, Tian-Ji & Fang, Zhen, 2023. "A novel strategy for efficient biodiesel production: Optimization, prediction, and mechanism," Renewable Energy, Elsevier, vol. 207(C), pages 385-397.
    17. Ma, Yingqun & Wang, Qunhui & Gao, Zhen & Sun, Xiaohong & Wang, Nan & Niu, Ruxuan & Ma, Hongzhi, 2016. "Transesterification of waste cooking oil using FeCl3-modified resin catalyst and the research of catalytic mechanism," Renewable Energy, Elsevier, vol. 86(C), pages 643-650.
    18. Chaveanghong, Suwilai & Smith, Siwaporn Meejoo & Smith, Christopher B. & Luengnaruemitchai, Apanee & Boonyuen, Supakorn, 2018. "Simultaneous transesterification and esterification of acidic oil feedstocks catalyzed by heterogeneous tungsten loaded bovine bone under mild conditions," Renewable Energy, Elsevier, vol. 126(C), pages 156-162.
    19. Shahinuzzaman, M. & Yaakob, Zahira & Ahmed, Yunus, 2017. "Non-sulphide zeolite catalyst for bio-jet-fuel conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1375-1384.
    20. Ebadinezhad, Behzad & Haghighi, Mohammad & Zeinalzadeh, Hossein, 2022. "Carbon-templated meso-design of nanostructured CeAPSO-34 for biodiesel production from free fatty acid and waste oil," Renewable Energy, Elsevier, vol. 195(C), pages 716-733.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123010534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.