IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v537y2016i7620d10.1038_nature19060.html
   My bibliography  Save this article

Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration

Author

Listed:
  • Min Liu

    (University of Toronto)

  • Yuanjie Pang

    (University of Toronto)

  • Bo Zhang

    (University of Toronto
    East China University of Science and Technology)

  • Phil De Luna

    (University of Toronto)

  • Oleksandr Voznyy

    (University of Toronto)

  • Jixian Xu

    (University of Toronto)

  • Xueli Zheng

    (University of Toronto
    Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University)

  • Cao Thang Dinh

    (University of Toronto)

  • Fengjia Fan

    (University of Toronto)

  • Changhong Cao

    (University of Toronto)

  • F. Pelayo García de Arquer

    (University of Toronto)

  • Tina Saberi Safaei

    (University of Toronto)

  • Adam Mepham

    (Institute of Biomaterials and Biomedical Engineering, University of Toronto)

  • Anna Klinkova

    (University of Toronto)

  • Eugenia Kumacheva

    (University of Toronto)

  • Tobin Filleter

    (University of Toronto)

  • David Sinton

    (University of Toronto)

  • Shana O. Kelley

    (Institute of Biomaterials and Biomedical Engineering, University of Toronto
    Leslie Dan Faculty of Pharmacy, University of Toronto
    University of Toronto)

  • Edward H. Sargent

    (University of Toronto)

Abstract

Gold and palladium nanoneedle electrocatalysts benefit from field-induced reagent concentration to improve the efficiency of carbon dioxide reduction in the synthesis of carbon-based fuels using renewable electricity.

Suggested Citation

  • Min Liu & Yuanjie Pang & Bo Zhang & Phil De Luna & Oleksandr Voznyy & Jixian Xu & Xueli Zheng & Cao Thang Dinh & Fengjia Fan & Changhong Cao & F. Pelayo García de Arquer & Tina Saberi Safaei & Adam Me, 2016. "Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration," Nature, Nature, vol. 537(7620), pages 382-386, September.
  • Handle: RePEc:nat:nature:v:537:y:2016:i:7620:d:10.1038_nature19060
    DOI: 10.1038/nature19060
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature19060
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature19060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tongtong Li & Boran Wang & Yu Cao & Zhexuan Liu & Shaogang Wang & Qi Zhang & Jie Sun & Guangmin Zhou, 2024. "Energy-saving hydrogen production by seawater electrolysis coupling tip-enhanced electric field promoted electrocatalytic sulfion oxidation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Zesong Ma & Zhilong Yang & Wenchuan Lai & Qiyou Wang & Yan Qiao & Haolan Tao & Cheng Lian & Min Liu & Chao Ma & Anlian Pan & Hongwen Huang, 2022. "CO2 electroreduction to multicarbon products in strongly acidic electrolyte via synergistically modulating the local microenvironment," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Xiaozhi Su & Zhuoli Jiang & Jing Zhou & Hengjie Liu & Danni Zhou & Huishan Shang & Xingming Ni & Zheng Peng & Fan Yang & Wenxing Chen & Zeming Qi & Dingsheng Wang & Yu Wang, 2022. "Complementary Operando Spectroscopy identification of in-situ generated metastable charge-asymmetry Cu2-CuN3 clusters for CO2 reduction to ethanol," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Ye Tian & Botao Huang & Yizhi Song & Yirui Zhang & Dong Guan & Jiani Hong & Duanyun Cao & Enge Wang & Limei Xu & Yang Shao-Horn & Ying Jiang, 2024. "Effect of ion-specific water structures at metal surfaces on hydrogen production," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Qiyou Wang & Kang Liu & Kangman Hu & Chao Cai & Huangjingwei Li & Hongmei Li & Matias Herran & Ying-Rui Lu & Ting-Shan Chan & Chao Ma & Junwei Fu & Shiguo Zhang & Ying Liang & Emiliano Cortés & Min Li, 2022. "Attenuating metal-substrate conjugation in atomically dispersed nickel catalysts for electroreduction of CO2 to CO," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Ruixin Yang & Yanming Cai & Yongbing Qi & Zhuodong Tang & Jun-Jie Zhu & Jinxiang Li & Wenlei Zhu & Zixuan Chen, 2024. "How local electric field regulates C–C coupling at a single nanocavity in electrocatalytic CO2 reduction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Liu, Sijie & Geng, Yong & Gao, Ziyan & Li, Jinze & Xiao, Shijiang, 2023. "Uncovering the key features of gold flows and stocks in China," Resources Policy, Elsevier, vol. 82(C).
    8. Linjie Zhang & Haihui Hu & Chen Sun & Dongdong Xiao & Hsiao-Tsu Wang & Yi Xiao & Shuwen Zhao & Kuan Hung Chen & Wei-Xuan Lin & Yu-Cheng Shao & Xiuyun Wang & Chih-Wen Pao & Lili Han, 2024. "Bimetallic nanoalloys planted on super-hydrophilic carbon nanocages featuring tip-intensified hydrogen evolution electrocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Pengcheng Ye & Keqing Fang & Haiyan Wang & Yahao Wang & Hao Huang & Chenbin Mo & Jiqiang Ning & Yong Hu, 2024. "Lattice oxygen activation and local electric field enhancement by co-doping Fe and F in CoO nanoneedle arrays for industrial electrocatalytic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Shoujie Li & Wei Chen & Xiao Dong & Chang Zhu & Aohui Chen & Yanfang Song & Guihua Li & Wei Wei & Yuhan Sun, 2022. "Hierarchical micro/nanostructured silver hollow fiber boosts electroreduction of carbon dioxide," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Yicui Kang & Simão M. João & Rui Lin & Kang Liu & Li Zhu & Junwei Fu & Weng-Chon (Max) Cheong & Seunghoon Lee & Kilian Frank & Bert Nickel & Min Liu & Johannes Lischner & Emiliano Cortés, 2024. "Effect of crystal facets in plasmonic catalysis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Bingqing Wang & Meng Wang & Ziting Fan & Chao Ma & Shibo Xi & Lo‐Yueh Chang & Mingsheng Zhang & Ning Ling & Ziyu Mi & Shenghua Chen & Wan Ru Leow & Jia Zhang & Dingsheng Wang & Yanwei Lum, 2024. "Nanocurvature-induced field effects enable control over the activity of single-atom electrocatalysts," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Xiaowei Shi & Chao Dai & Xin Wang & Jiayue Hu & Junying Zhang & Lingxia Zheng & Liang Mao & Huajun Zheng & Mingshan Zhu, 2022. "Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Chia-Shuo Hsu & Jiali Wang & You-Chiuan Chu & Jui-Hsien Chen & Chia-Ying Chien & Kuo-Hsin Lin & Li Duan Tsai & Hsiao-Chien Chen & Yen-Fa Liao & Nozomu Hiraoka & Yuan-Chung Cheng & Hao Ming Chen, 2023. "Activating dynamic atomic-configuration for single-site electrocatalyst in electrochemical CO2 reduction," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    15. Meng He & Rui Li & Chuanqi Cheng & Cuibo Liu & Bin Zhang, 2024. "Microenvironment regulation breaks the Faradaic efficiency-current density trade-off for electrocatalytic deuteration using D2O," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Kejian Kong & An-Zhen Li & Ye Wang & Qiujin Shi & Jing Li & Kaiyue Ji & Haohong Duan, 2023. "Electrochemical carbon–carbon coupling with enhanced activity and racemate stereoselectivity by microenvironment regulation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Ji Wei Sun & Xuefeng Wu & Peng Fei Liu & Jiacheng Chen & Yuanwei Liu & Zhen Xin Lou & Jia Yue Zhao & Hai Yang Yuan & Aiping Chen & Xue Lu Wang & Minghui Zhu & Sheng Dai & Hua Gui Yang, 2023. "Scalable synthesis of coordinatively unsaturated metal-nitrogen sites for large-scale CO2 electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Jie Xu & Xiong-Xiong Xue & Gonglei Shao & Changfei Jing & Sheng Dai & Kun He & Peipei Jia & Shun Wang & Yifei Yuan & Jun Luo & Jun Lu, 2023. "Atomic-level polarization in electric fields of defects for electrocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Hai Liu & Xinxi Huang & Yang Wang & Baian Kuang & Wanbin Li, 2024. "Nanowire-assisted electrochemical perforation of graphene oxide nanosheets for molecular separation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:537:y:2016:i:7620:d:10.1038_nature19060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.