IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40691-2.html
   My bibliography  Save this article

Rapid self-heating synthesis of Fe-based nanomaterial catalyst for advanced oxidation

Author

Listed:
  • Fengbo Yu

    (Fudan University)

  • Chao Jia

    (Fudan University)

  • Xuan Wu

    (Fudan University)

  • Liming Sun

    (Fudan University)

  • Zhijian Shi

    (Fudan University)

  • Tao Teng

    (Fudan University)

  • Litao Lin

    (Fudan University)

  • Zhelin He

    (Fudan University)

  • Jie Gao

    (Fudan University)

  • Shicheng Zhang

    (Fudan University
    Shanghai Institute of Pollution Control and Ecological Security)

  • Liang Wang

    (Jiangsu University of Science and Technology)

  • Shaobin Wang

    (The University of Adelaide)

  • Xiangdong Zhu

    (Fudan University
    Suzhou University of Science and Technology)

Abstract

Iron-based catalysts are promising candidates for advanced oxidation process-based wastewater remediation. However, the preparation of these materials often involves complex and energy intensive syntheses. Further, due to the inherent limitations of the preparation conditions, it is challenging to realise the full potential of the catalyst. Herein, we develop an iron-based nanomaterial catalyst via soft carbon assisted flash joule heating (FJH). FJH involves rapid temperature increase, electric shock, and cooling, the process simultaneously transforms a low-grade iron mineral (FeS) and soft carbon into an electron rich nano Fe0/FeS heterostructure embedded in thin-bedded graphene. The process is energy efficient and consumes 34 times less energy than conventional pyrolysis. Density functional theory calculations indicate that the electron delocalization of the FJH-derived heterostructure improves its binding ability with peroxydisulfate via bidentate binuclear model, thereby enhancing ·OH yield for organics mineralization. The Fe-based nanomaterial catalyst exhibits strong catalytic performance over a wide pH range. Similar catalysts can be prepared using other commonly available iron precursors. Finally, we also present a strategy for continuous and automated production of the iron-based nanomaterial catalysts.

Suggested Citation

  • Fengbo Yu & Chao Jia & Xuan Wu & Liming Sun & Zhijian Shi & Tao Teng & Litao Lin & Zhelin He & Jie Gao & Shicheng Zhang & Liang Wang & Shaobin Wang & Xiangdong Zhu, 2023. "Rapid self-heating synthesis of Fe-based nanomaterial catalyst for advanced oxidation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40691-2
    DOI: 10.1038/s41467-023-40691-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40691-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40691-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhan Zhao & Jianpeng Sun & Xiang Li & Shiyu Qin & Chunhu Li & Zisheng Zhang & Zizhen Li & Xiangchao Meng, 2024. "Engineering active and robust alloy-based electrocatalyst by rapid Joule-heating toward ampere-level hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Zelin Wu & Zhaokun Xiong & Bingkun Huang & Gang Yao & Sihui Zhan & Bo Lai, 2024. "Long-range interactions driving neighboring Fe–N4 sites in Fenton-like reactions for sustainable water decontamination," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Yi Cheng & Bing Deng & Phelecia Scotland & Lucas Eddy & Arman Hassan & Bo Wang & Karla J. Silva & Bowen Li & Kevin M. Wyss & Mine G. Ucak-Astarlioglu & Jinhang Chen & Qiming Liu & Tengda Si & Shichen , 2024. "Electrothermal mineralization of per- and polyfluoroalkyl substances for soil remediation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Qianqian Tang & Bangxiang Wu & Xiaowen Huang & Wei Ren & Lingling Liu & Lei Tian & Ying Chen & Long-Shuai Zhang & Qing Sun & Zhibing Kang & Tianyi Ma & Jian-Ping Zou, 2024. "Electron transfer mediated activation of periodate by contaminants to generate 1O2 by charge-confined single-atom catalyst," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40691-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.