IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51817-5.html
   My bibliography  Save this article

An essential role for the latero-medial secondary visual cortex in the acquisition and retention of visual perceptual learning in mice

Author

Listed:
  • Alan Consorti

    (National Research Council (CNR)
    University of Florence)

  • Gabriele Sansevero

    (National Research Council (CNR))

  • Irene Marco

    (National Research Council (CNR)
    University of Florence)

  • Silvia Floridia

    (National Research Council (CNR))

  • Elena Novelli

    (National Research Council (CNR))

  • Nicoletta Berardi

    (National Research Council (CNR)
    University of Florence)

  • Alessandro Sale

    (National Research Council (CNR))

Abstract

Perceptual learning refers to any change in discrimination abilities as a result of practice, a fundamental process that improves the organism’s response to the external environment. Visual perceptual learning (vPL) is supposed to rely on functional rearrangements in brain circuity occurring at early stages of sensory processing, with a pivotal role for the primary visual cortex (V1). However, top-down inputs from higher-order visual areas (HVAs) have been suggested to play a key part in vPL, conveying information on attention, expectation and the precise nature of the perceptual task. A direct assessment of the possibility to modulate vPL by manipulating top-down activity in awake subjects is still missing. Here, we used a combination of chemogenetics, behavioral analysis and multichannel electrophysiological assessments to show a critical role in vPL acquisition and retention for neuronal activity in the latero-medial secondary visual cortex (LM), the prime source for top-down feedback projections reentering V1.

Suggested Citation

  • Alan Consorti & Gabriele Sansevero & Irene Marco & Silvia Floridia & Elena Novelli & Nicoletta Berardi & Alessandro Sale, 2024. "An essential role for the latero-medial secondary visual cortex in the acquisition and retention of visual perceptual learning in mice," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51817-5
    DOI: 10.1038/s41467-024-51817-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51817-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51817-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lauri Nurminen & Sam Merlin & Maryam Bijanzadeh & Frederick Federer & Alessandra Angelucci, 2018. "Top-down feedback controls spatial summation and response amplitude in primate visual cortex," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    2. Mehdi Sanayei & Xing Chen & Daniel Chicharro & Claudia Distler & Stefano Panzeri & Alexander Thiele, 2018. "Perceptual learning of fine contrast discrimination changes neuronal tuning and population coding in macaque V4," Nature Communications, Nature, vol. 9(1), pages 1-15, December.
    3. J. Gold & P. J. Bennett & A. B. Sekuler, 1999. "Signal but not noise changes with perceptual learning," Nature, Nature, vol. 402(6758), pages 176-178, November.
    4. Aniek Schoups & Rufin Vogels & Ning Qian & Guy Orban, 2001. "Practising orientation identification improves orientation coding in V1 neurons," Nature, Nature, vol. 412(6846), pages 549-553, August.
    5. Seung Wook Oh & Julie A. Harris & Lydia Ng & Brent Winslow & Nicholas Cain & Stefan Mihalas & Quanxin Wang & Chris Lau & Leonard Kuan & Alex M. Henry & Marty T. Mortrud & Benjamin Ouellette & Thuc Ngh, 2014. "A mesoscale connectome of the mouse brain," Nature, Nature, vol. 508(7495), pages 207-214, April.
    6. Evan H. Feinberg & Markus Meister, 2015. "Orientation columns in the mouse superior colliculus," Nature, Nature, vol. 519(7542), pages 229-232, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ari S. Benjamin & Ling-Qi Zhang & Cheng Qiu & Alan A. Stocker & Konrad P. Kording, 2022. "Efficient neural codes naturally emerge through gradient descent learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Jiashu Liu & Yingtian He & Andreanne Lavoie & Guy Bouvier & Bao-hua Liu, 2023. "A direction-selective cortico-brainstem pathway adaptively modulates innate behaviors," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    3. Simon Weiler & Vahid Rahmati & Marcel Isstas & Johann Wutke & Andreas Walter Stark & Christian Franke & Jürgen Graf & Christian Geis & Otto W. Witte & Mark Hübener & Jürgen Bolz & Troy W. Margrie & Kn, 2024. "A primary sensory cortical interareal feedforward inhibitory circuit for tacto-visual integration," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    4. Wenqi Chen & Jiejunyi Liang & Qiyun Wu & Yunyun Han, 2024. "Anterior cingulate cortex provides the neural substrates for feedback-driven iteration of decision and value representation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Wen-Hao Zhang & Si Wu & Krešimir Josić & Brent Doiron, 2023. "Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    6. Alessandra Griffa & Mathieu Mach & Julien Dedelley & Daniel Gutierrez-Barragan & Alessandro Gozzi & Gilles Allali & Joanes Grandjean & Dimitri Ville & Enrico Amico, 2023. "Evidence for increased parallel information transmission in human brain networks compared to macaques and male mice," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Alireza Saeedi & Kun Wang & Ghazaleh Nikpourian & Andreas Bartels & Nikos K. Logothetis & Nelson K. Totah & Masataka Watanabe, 2024. "Brightness illusions drive a neuronal response in the primary visual cortex under top-down modulation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Marcus N. Leiwe & Satoshi Fujimoto & Toshikazu Baba & Daichi Moriyasu & Biswanath Saha & Richi Sakaguchi & Shigenori Inagaki & Takeshi Imai, 2024. "Automated neuronal reconstruction with super-multicolour Tetbow labelling and threshold-based clustering of colour hues," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    9. Marghoti, Gabriel & de Lima Prado, Thiago & Conte, Arturo Cagnato & Ferrari, Fabiano Alan Serafim & Lopes, Sergio Roberto, 2022. "Intermittent chimera-like and bi-stable synchronization states in network of distinct Izhikevich neurons," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    10. Vincent Paget-Blanc & Marlene E. Pfeffer & Marie Pronot & Paul Lapios & Maria-Florencia Angelo & Roman Walle & Fabrice P. Cordelières & Florian Levet & Stéphane Claverol & Sabrina Lacomme & Mélina Pet, 2022. "A synaptomic analysis reveals dopamine hub synapses in the mouse striatum," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    11. Harry Carey & Michael Pegios & Lewis Martin & Chris Saleeba & Anita J. Turner & Nicholas A. Everett & Ingvild E. Bjerke & Maja A. Puchades & Jan G. Bjaalie & Simon McMullan, 2023. "DeepSlice: rapid fully automatic registration of mouse brain imaging to a volumetric atlas," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Peng Liu, 2024. "Antinetwork among China A-shares," Papers 2404.00028, arXiv.org.
    13. Jérémie Sibille & Carolin Gehr & Jonathan I. Benichov & Hymavathy Balasubramanian & Kai Lun Teh & Tatiana Lupashina & Daniela Vallentin & Jens Kremkow, 2022. "High-density electrode recordings reveal strong and specific connections between retinal ganglion cells and midbrain neurons," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    14. Xindong Song & Yueqi Guo & Hongbo Li & Chenggang Chen & Jong Hoon Lee & Yang Zhang & Zachary Schmidt & Xiaoqin Wang, 2022. "Mesoscopic landscape of cortical functions revealed by through-skull wide-field optical imaging in marmoset monkeys," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    15. Xuandi Hou & Jianing Jing & Yizhou Jiang & Xiaohui Huang & Quanxiang Xian & Ting Lei & Jiejun Zhu & Kin Fung Wong & Xinyi Zhao & Min Su & Danni Li & Langzhou Liu & Zhihai Qiu & Lei Sun, 2024. "Nanobubble-actuated ultrasound neuromodulation for selectively shaping behavior in mice," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    16. Dongsheng Xiao & Brandon J. Forys & Matthieu P. Vanni & Timothy H. Murphy, 2021. "MesoNet allows automated scaling and segmentation of mouse mesoscale cortical maps using machine learning," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    17. Shan Shen & Xiaolong Jiang & Federico Scala & Jiakun Fu & Paul Fahey & Dmitry Kobak & Zhenghuan Tan & Na Zhou & Jacob Reimer & Fabian Sinz & Andreas S. Tolias, 2022. "Distinct organization of two cortico-cortical feedback pathways," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    18. Richard F Murray & Khushbu Patel & Alan Yee, 2015. "Posterior Probability Matching and Human Perceptual Decision Making," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-16, June.
    19. Yao Fei & Qihang Wu & Shijie Zhao & Kun Song & Junwei Han & Cirong Liu, 2024. "Diverse and asymmetric patterns of single-neuron projectome in regulating interhemispheric connectivity," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    20. Ayelet M. Rosenberg & Manish Saggar & Anna S. Monzel & Jack Devine & Peter Rogu & Aaron Limoges & Alex Junker & Carmen Sandi & Eugene V. Mosharov & Dani Dumitriu & Christoph Anacker & Martin Picard, 2023. "Brain mitochondrial diversity and network organization predict anxiety-like behavior in male mice," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51817-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.