IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29864-7.html
   My bibliography  Save this article

Mesoscopic landscape of cortical functions revealed by through-skull wide-field optical imaging in marmoset monkeys

Author

Listed:
  • Xindong Song

    (Johns Hopkins University School of Medicine)

  • Yueqi Guo

    (Johns Hopkins University School of Medicine)

  • Hongbo Li

    (Johns Hopkins University School of Medicine)

  • Chenggang Chen

    (Johns Hopkins University School of Medicine)

  • Jong Hoon Lee

    (Johns Hopkins University School of Medicine)

  • Yang Zhang

    (Johns Hopkins University School of Medicine)

  • Zachary Schmidt

    (Johns Hopkins University School of Medicine)

  • Xiaoqin Wang

    (Johns Hopkins University School of Medicine)

Abstract

The primate cerebral cortex is organized into specialized areas representing different modalities and functions along a continuous surface. The functional maps across the cortex, however, are often investigated a single modality at a time (e.g., audition or vision). To advance our understanding of the complex landscape of primate cortical functions, here we develop a polarization-gated wide-field optical imaging method for measuring cortical functions through the un-thinned intact skull in awake marmoset monkeys (Callithrix jacchus), a primate species featuring a smooth cortex. Using this method, adjacent auditory, visual, and somatosensory cortices are noninvasively parcellated in individual subjects with detailed tonotopy, retinotopy, and somatotopy. An additional pure-tone-responsive tonotopic gradient is discovered in auditory cortex and a face-patch sensitive to motion in the lower-center visual field is localized near an auditory region representing frequencies of conspecific vocalizations. This through-skull landscape-mapping approach provides new opportunities for understanding how the primate cortex is organized and coordinated to enable real-world behaviors.

Suggested Citation

  • Xindong Song & Yueqi Guo & Hongbo Li & Chenggang Chen & Jong Hoon Lee & Yang Zhang & Zachary Schmidt & Xiaoqin Wang, 2022. "Mesoscopic landscape of cortical functions revealed by through-skull wide-field optical imaging in marmoset monkeys," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29864-7
    DOI: 10.1038/s41467-022-29864-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29864-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29864-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lauri Nurminen & Sam Merlin & Maryam Bijanzadeh & Frederick Federer & Alessandra Angelucci, 2018. "Top-down feedback controls spatial summation and response amplitude in primate visual cortex," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    2. Yevgeniy B. Sirotin & Aniruddha Das, 2009. "Anticipatory haemodynamic signals in sensory cortex not predicted by local neuronal activity," Nature, Nature, vol. 457(7228), pages 475-479, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon Weiler & Vahid Rahmati & Marcel Isstas & Johann Wutke & Andreas Walter Stark & Christian Franke & Jürgen Graf & Christian Geis & Otto W. Witte & Mark Hübener & Jürgen Bolz & Troy W. Margrie & Kn, 2024. "A primary sensory cortical interareal feedforward inhibitory circuit for tacto-visual integration," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    2. Alireza Saeedi & Kun Wang & Ghazaleh Nikpourian & Andreas Bartels & Nikos K. Logothetis & Nelson K. Totah & Masataka Watanabe, 2024. "Brightness illusions drive a neuronal response in the primary visual cortex under top-down modulation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Hannah C. Bennett & Qingguang Zhang & Yuan-ting Wu & Steffy B. Manjila & Uree Chon & Donghui Shin & Daniel J. Vanselow & Hyun-Jae Pi & Patrick J. Drew & Yongsoo Kim, 2024. "Aging drives cerebrovascular network remodeling and functional changes in the mouse brain," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    4. Christina Mo & Claire McKinnon & S. Murray Sherman, 2024. "A transthalamic pathway crucial for perception," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Shan Shen & Xiaolong Jiang & Federico Scala & Jiakun Fu & Paul Fahey & Dmitry Kobak & Zhenghuan Tan & Na Zhou & Jacob Reimer & Fabian Sinz & Andreas S. Tolias, 2022. "Distinct organization of two cortico-cortical feedback pathways," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Alan Consorti & Gabriele Sansevero & Irene Marco & Silvia Floridia & Elena Novelli & Nicoletta Berardi & Alessandro Sale, 2024. "An essential role for the latero-medial secondary visual cortex in the acquisition and retention of visual perceptual learning in mice," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Zvi N. Roth & Elisha P. Merriam, 2023. "Representations in human primary visual cortex drift over time," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Danique Jeurissen & Anne F. Ham & Amparo Gilhuis & Paolo Papale & Pieter R. Roelfsema & Matthew W. Self, 2024. "Border-ownership tuning determines the connectivity between V4 and V1 in the macaque visual system," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29864-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.