IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47483-2.html
   My bibliography  Save this article

Transparent integrated pyroelectric-photovoltaic structure for photo-thermo hybrid power generation

Author

Listed:
  • Malkeshkumar Patel

    (Multidisciplinary Core Institute for Future Energies (MCIFE)
    Incheon National University)

  • Hyeong-Ho Park

    (Korea Advanced Nanofab Center (KANC))

  • Priyanka Bhatnagar

    (Multidisciplinary Core Institute for Future Energies (MCIFE)
    Incheon National University)

  • Naveen Kumar

    (Multidisciplinary Core Institute for Future Energies (MCIFE)
    Incheon National University)

  • Junsik Lee

    (Multidisciplinary Core Institute for Future Energies (MCIFE)
    Incheon National University)

  • Joondong Kim

    (Multidisciplinary Core Institute for Future Energies (MCIFE)
    Incheon National University)

Abstract

Thermal losses in photoelectric devices limit their energy conversion efficiency, and cyclic input of energy coupled with pyroelectricity can overcome this limit. Here, incorporating a pyroelectric absorber into a photovoltaic heterostructure device enables efficient electricity generation by leveraging spontaneous polarization based on pulsed light-induced thermal changes. The proposed pyroelectric-photovoltaic device outperforms traditional photovoltaic devices by 2.5 times due to the long-range electric field that occurs under pulse illumination. Optimization of parameters such as pulse frequency, scan speed, and illumination wavelength enhances power harvesting, as demonstrated by a power conversion efficiency of 11.9% and an incident-photon-to-current conversion efficiency of 200% under optimized conditions. This breakthrough enables reconfigurable electrostatic devices and presents an opportunity to accelerate technology that surpasses conventional limits in energy generation.

Suggested Citation

  • Malkeshkumar Patel & Hyeong-Ho Park & Priyanka Bhatnagar & Naveen Kumar & Junsik Lee & Joondong Kim, 2024. "Transparent integrated pyroelectric-photovoltaic structure for photo-thermo hybrid power generation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47483-2
    DOI: 10.1038/s41467-024-47483-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47483-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47483-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lingbo Xiao & Xiaoli Xu & Yanmin Jia & Ge Hu & Jun Hu & Biao Yuan & Yi Yu & Guifu Zou, 2021. "Pyroelectric nanoplates for reduction of CO2 to methanol driven by temperature-variation," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Zhaona Wang & Ruomeng Yu & Caofeng Pan & Zhaoling Li & Jin Yang & Fang Yi & Zhong Lin Wang, 2015. "Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing," Nature Communications, Nature, vol. 6(1), pages 1-7, December.
    3. Xi Zeng & Yi Liu & Wen Weng & Lina Hua & Liwei Tang & Wuqian Guo & Yaoyao Chen & Tian Yang & Haojie Xu & Junhua Luo & Zhihua Sun, 2023. "A molecular pyroelectric enabling broadband photo-pyroelectric effect towards self-driven wide spectral photodetection," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Huilin You & Yanmin Jia & Zheng Wu & Feifei Wang & Haitao Huang & Yu Wang, 2018. "Room-temperature pyro-catalytic hydrogen generation of 2D few-layer black phosphorene under cold-hot alternation," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    5. Hua Zhou & Lijun Wu & Hui-Qiong Wang & Jin-Cheng Zheng & Lihua Zhang & Kim Kisslinger & Yaping Li & Zhiqiang Wang & Hao Cheng & Shanming Ke & Yu Li & Junyong Kang & Yimei Zhu, 2017. "Interfaces between hexagonal and cubic oxides and their structure alternatives," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
    6. U. Sassi & R. Parret & S. Nanot & M. Bruna & S. Borini & D. De Fazio & Z. Zhao & E. Lidorikis & F.H.L. Koppens & A. C. Ferrari & A. Colli, 2017. "Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance," Nature Communications, Nature, vol. 8(1), pages 1-10, April.
    7. Haiyang Zhan & Zichao Yuan & Yu Li & Liang Zhang & Hui Liang & Yuhui Zhao & Zhiguo Wang & Lei Zhao & Shile Feng & Yahua Liu, 2023. "Versatile bubble maneuvering on photopyroelectric slippery surfaces," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Huilin You & Siqi Li & Yulong Fan & Xuyun Guo & Zezhou Lin & Ran Ding & Xin Cheng & Hao Zhang & Tsz Woon Benedict Lo & Jianhua Hao & Ye Zhu & Hwa-Yaw Tam & Dangyuan Lei & Chi-Hang Lam & Haitao Huang, 2022. "Accelerated pyro-catalytic hydrogen production enabled by plasmonic local heating of Au on pyroelectric BaTiO3 nanoparticles," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Lingbo Xiao & Xiaoli Xu & Yanmin Jia & Ge Hu & Jun Hu & Biao Yuan & Yi Yu & Guifu Zou, 2021. "Author Correction: Pyroelectric nanoplates for reduction of CO2 to methanol driven by temperature-variation," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
    10. Pierre Lheritier & Alvar Torelló & Tomoyasu Usui & Youri Nouchokgwe & Ashwath Aravindhan & Junning Li & Uros Prah & Veronika Kovacova & Olivier Bouton & Sakyo Hirose & Emmanuel Defay, 2022. "Large harvested energy with non-linear pyroelectric modules," Nature, Nature, vol. 609(7928), pages 718-721, September.
    11. Ming-Min Yang & Zheng-Dong Luo & Zhou Mi & Jinjin Zhao & Sharel Pei E & Marin Alexe, 2020. "Piezoelectric and pyroelectric effects induced by interface polar symmetry," Nature, Nature, vol. 584(7821), pages 377-381, August.
    12. Zhen Wang & Jinho Byun & Subin Lee & Jinsol Seo & Bumsu Park & Jong Chan Kim & Hu Young Jeong & Junhyeok Bang & Jaekwang Lee & Sang Ho Oh, 2022. "Vacancy driven surface disorder catalyzes anisotropic evaporation of ZnO (0001) polar surface," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Wang & Shuhao Wang & Yanze Meng & Zhen Liu & Dijie Li & Yunyang Bai & Guoliang Yuan & Yaojin Wang & Xuehui Zhang & Xiaoguang Li & Xuliang Deng, 2022. "Pyro-catalysis for tooth whitening via oral temperature fluctuation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Huilin You & Siqi Li & Yulong Fan & Xuyun Guo & Zezhou Lin & Ran Ding & Xin Cheng & Hao Zhang & Tsz Woon Benedict Lo & Jianhua Hao & Ye Zhu & Hwa-Yaw Tam & Dangyuan Lei & Chi-Hang Lam & Haitao Huang, 2022. "Accelerated pyro-catalytic hydrogen production enabled by plasmonic local heating of Au on pyroelectric BaTiO3 nanoparticles," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Xiaoyang Pan & Xuhui Yang & Maoqing Yu & Xiaoxiao Lu & Hao Kang & Min-Quan Yang & Qingrong Qian & Xiaojing Zhao & Shijing Liang & Zhenfeng Bian, 2023. "2D MXenes polar catalysts for multi-renewable energy harvesting applications," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Shubham Kumar Parate & Sandeep Vura & Subhajit Pal & Upanya Khandelwal & Rama Satya Sandilya Ventrapragada & Rajeev Kumar Rai & Sri Harsha Molleti & Vishnu Kumar & Girish Patil & Mudit Jain & Ambresh , 2024. "Giant electrostriction-like response from defective non-ferroelectric epitaxial BaTiO3 integrated on Si (100)," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Yi Zhou & Tianpeng Ding & Jun Guo & Guoqiang Xu & Mingqiang Cheng & Chen Zhang & Xiao-Qiao Wang & Wanheng Lu & Wei Li Ong & Jiangyu Li & Jiaqing He & Cheng-Wei Qiu & Ghim Wei Ho, 2023. "Giant polarization ripple in transverse pyroelectricity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Seung Choi, Han & Hur, Sunghoon & Kumar, Ajeet & Song, Hyunseok & Min Baik, Jeong & Song, Hyun-Cheol & Ryu, Jungho, 2023. "Continuous pyroelectric energy generation with cyclic magnetic phase transition for low-grade thermal energy harvesting," Applied Energy, Elsevier, vol. 344(C).
    7. Yue Li & Xingwu Liu & Tong Wu & Xiangzhou Zhang & Hecheng Han & Xiaoyu Liu & Yuke Chen & Zhenfei Tang & Zhen Liu & Yuhai Zhang & Hong Liu & Lili Zhao & Ding Ma & Weijia Zhou, 2024. "Pulsed laser induced plasma and thermal effects on molybdenum carbide for dry reforming of methane," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Xiao Guo & Yilin Wang & Chunyu Xu & Zibo Wei & Chenxi Ding, 2024. "Influence of the Schottky Junction on the Propagation Characteristics of Shear Horizontal Waves in a Piezoelectric Semiconductor Semi-Infinite Medium," Mathematics, MDPI, vol. 12(4), pages 1-26, February.
    9. An Cao & Yi Gong & Dilong Liu & Fan Yang & Yulong Fan & Yinghui Guo & Xingyou Tian & Yue Li, 2024. "Rapid fabrication of gold microsphere arrays with stable deep-pressing anisotropic conductivity for advanced packaging," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Salazar, R. & Serrano, M. & Abdelkefi, A., 2020. "Fatigue in piezoelectric ceramic vibrational energy harvesting: A review," Applied Energy, Elsevier, vol. 270(C).
    11. Yuzhong Hu & Kaushik Parida & Hao Zhang & Xin Wang & Yongxin Li & Xinran Zhou & Samuel Alexander Morris & Weng Heng Liew & Haomin Wang & Tao Li & Feng Jiang & Mingmin Yang & Marin Alexe & Zehui Du & C, 2022. "Bond engineering of molecular ferroelectrics renders soft and high-performance piezoelectric energy harvesting materials," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Poudel, Sachin & Thapa, Rubi & Basnet, Rabin & Timofiejczuk, Anna & Kunwar, Anil, 2024. "PiezoTensorNet: Crystallography informed multi-scale hierarchical machine learning model for rapid piezoelectric performance finetuning," Applied Energy, Elsevier, vol. 361(C).
    13. Qiuhong Yu & Rui Ge & Juan Wen & Qi Xu & Zhouguang Lu & Shuhai Liu & Yong Qin, 2024. "Electric pulse-tuned piezotronic effect for interface engineering," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Xi Zeng & Yi Liu & Wen Weng & Lina Hua & Liwei Tang & Wuqian Guo & Yaoyao Chen & Tian Yang & Haojie Xu & Junhua Luo & Zhihua Sun, 2023. "A molecular pyroelectric enabling broadband photo-pyroelectric effect towards self-driven wide spectral photodetection," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    15. Lu Yang & Zhiyu Zhao & Boshi Tian & Meiqi Yang & Yushan Dong & Bingchen Zhou & Shili Gai & Ying Xie & Jun Lin, 2024. "A singular plasmonic-thermoelectric hollow nanostructure inducing apoptosis and cuproptosis for catalytic cancer therapy," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    16. Dohyun Kwak & Dmitry K. Polyushkin & Thomas Mueller, 2023. "In-sensor computing using a MoS2 photodetector with programmable spectral responsivity," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    17. Jinpei Wang & Yuxin Song & Fanfei Yu & Yijun Zeng & Chenyang Wu & Xuezhi Qin & Liang Peng & Yitan Li & Yongsen Zhou & Ran Tao & Hangchen Liu & Hong Zhu & Ming Sun & Wanghuai Xu & Chao Zhang & Zuankai , 2024. "Ultrastrong, flexible thermogalvanic armor with a Carnot-relative efficiency over 8%," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Yu, Chengbin & Park, Juhyuk & Ryoun Youn, Jae & Seok Song, Young, 2022. "Integration of form-stable phase change material into pyroelectric energy harvesting system," Applied Energy, Elsevier, vol. 307(C).
    19. Kailun Zou & Peijia Bai & Kanghua Li & Fangyuan Luo & Jiajie Liang & Ling Lin & Rujun Ma & Qi Li & Shenglin Jiang & Qing Wang & Guangzu Zhang, 2024. "Electronic cooling and energy harvesting using ferroelectric polymer composites," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47483-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.