IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40954-y.html
   My bibliography  Save this article

Self-triggered thermoelectric nanoheterojunction for cancer catalytic and immunotherapy

Author

Listed:
  • Xue Yuan

    (Tianjin University)

  • Yong Kang

    (Tianjin University)

  • Jinrui Dong

    (Tianjin University)

  • Ruiyan Li

    (Tianjin University)

  • Jiamin Ye

    (Tianjin University)

  • Yueyue Fan

    (Tianjin University)

  • Jingwen Han

    (Tianjin University)

  • Junhui Yu

    (Tianjin University)

  • Guangjian Ni

    (Tianjin University)

  • Xiaoyuan Ji

    (Tianjin University
    Linyi University)

  • Dong Ming

    (Tianjin University)

Abstract

The exogenous excitation requirement and electron-hole recombination are the key elements limiting the application of catalytic therapies. Here a tumor microenvironment (TME)-specific self-triggered thermoelectric nanoheterojunction (Bi0.5Sb1.5Te3/CaO2 nanosheets, BST/CaO2 NSs) with self-built-in electric field facilitated charge separation is fabricated. Upon exposure to TME, the CaO2 coating undergoes rapid hydrolysis, releasing Ca2+, H2O2, and heat. The resulting temperature difference on the BST NSs initiates a thermoelectric effect, driving reactive oxygen species production. H2O2 not only serves as a substrate supplement for ROS generation but also dysregulates Ca2+ channels, preventing Ca2+ efflux. This further exacerbates calcium overload-mediated therapy. Additionally, Ca2+ promotes DC maturation and tumor antigen presentation, facilitating immunotherapy. It is worth noting that the CaO2 NP coating hydrolyzes very slowly in normal cells, releasing Ca2+ and O2 without causing any adverse effects. Tumor-specific self-triggered thermoelectric nanoheterojunction combined catalytic therapy, ion interference therapy, and immunotherapy exhibit excellent antitumor performance in female mice.

Suggested Citation

  • Xue Yuan & Yong Kang & Jinrui Dong & Ruiyan Li & Jiamin Ye & Yueyue Fan & Jingwen Han & Junhui Yu & Guangjian Ni & Xiaoyuan Ji & Dong Ming, 2023. "Self-triggered thermoelectric nanoheterojunction for cancer catalytic and immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40954-y
    DOI: 10.1038/s41467-023-40954-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40954-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40954-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaoyuan Ji & Lanlan Ge & Chuang Liu & Zhongmin Tang & Yufen Xiao & Wei Chen & Zhouyue Lei & Wei Gao & Sara Blake & Diba De & Bingyang Shi & Xiaobing Zeng & Na Kong & Xingcai Zhang & Wei Tao, 2021. "Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite for cancer theranostics," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    2. Na Kong & Hanjie Zhang & Chan Feng & Chuang Liu & Yufen Xiao & Xingcai Zhang & Lin Mei & Jong Seung Kim & Wei Tao & Xiaoyuan Ji, 2021. "Arsenene-mediated multiple independently targeted reactive oxygen species burst for cancer therapy," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    3. He, Wei & Zhang, Gan & Zhang, Xingxing & Ji, Jie & Li, Guiqiang & Zhao, Xudong, 2015. "Recent development and application of thermoelectric generator and cooler," Applied Energy, Elsevier, vol. 143(C), pages 1-25.
    4. Yong Kang & Zhuo Mao & Ying Wang & Chao Pan & Meitong Ou & Hanjie Zhang & Weiwei Zeng & Xiaoyuan Ji, 2022. "Design of a two-dimensional interplanar heterojunction for catalytic cancer therapy," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu Yang & Zhiyu Zhao & Boshi Tian & Meiqi Yang & Yushan Dong & Bingchen Zhou & Shili Gai & Ying Xie & Jun Lin, 2024. "A singular plasmonic-thermoelectric hollow nanostructure inducing apoptosis and cuproptosis for catalytic cancer therapy," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Hanjie Zhang & Yitong Zhang & Yushi Zhang & Hanyue Li & Meitong Ou & Yongkang Yu & Fan Zhang & Huijuan Yin & Zhuo Mao & Lin Mei, 2024. "Catalytic activity of violet phosphorus-based nanosystems and the role of metabolites in tumor therapy," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weicheng Shen & Tingting Hu & Xueyan Liu & Jiajia Zha & Fanqi Meng & Zhikang Wu & Zhuolin Cui & Yu Yang & Hai Li & Qinghua Zhang & Lin Gu & Ruizheng Liang & Chaoliang Tan, 2022. "Defect engineering of layered double hydroxide nanosheets as inorganic photosensitizers for NIR-III photodynamic cancer therapy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Yong Kang & Zhuo Mao & Ying Wang & Chao Pan & Meitong Ou & Hanjie Zhang & Weiwei Zeng & Xiaoyuan Ji, 2022. "Design of a two-dimensional interplanar heterojunction for catalytic cancer therapy," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    3. Cui, Tengfei & Xuan, Yimin & Yin, Ershuai & Li, Qiang & Li, Dianhong, 2017. "Experimental investigation on potential of a concentrated photovoltaic-thermoelectric system with phase change materials," Energy, Elsevier, vol. 122(C), pages 94-102.
    4. Selcuk Bulat & Erdal Büyükbicakci & Mustafa Erkovan, 2024. "Efficiency Enhancement in Photovoltaic–Thermoelectric Hybrid Systems through Cooling Strategies," Energies, MDPI, vol. 17(2), pages 1-12, January.
    5. Selimefendigil, Fatih & Öztop, Hakan F., 2020. "Identification of pulsating flow effects with CNT nanoparticles on the performance enhancements of thermoelectric generator (TEG) module in renewable energy applications," Renewable Energy, Elsevier, vol. 162(C), pages 1076-1086.
    6. Rasel, Mohammad Sala Uddin & Park, Jae-Yeong, 2017. "A sandpaper assisted micro-structured polydimethylsiloxane fabrication for human skin based triboelectric energy harvesting application," Applied Energy, Elsevier, vol. 206(C), pages 150-158.
    7. Shen, Rong & Gou, Xiaolong & Xu, Haoyu & Qiu, Kuanrong, 2017. "Dynamic performance analysis of a cascaded thermoelectric generator," Applied Energy, Elsevier, vol. 203(C), pages 808-815.
    8. Duan, Mengfan & Sun, Hongli & Lin, Borong & Wu, Yifan, 2021. "Evaluation on the applicability of thermoelectric air cooling systems for buildings with thermoelectric material optimization," Energy, Elsevier, vol. 221(C).
    9. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "Optimal design method for concentrating photovoltaic-thermoelectric hybrid system," Applied Energy, Elsevier, vol. 226(C), pages 320-329.
    10. Kashif Irshad, 2021. "Performance Improvement of Thermoelectric Air Cooler System by Using Variable-Pulse Current for Building Applications," Sustainability, MDPI, vol. 13(17), pages 1-13, August.
    11. Kane, Aarti & Verma, Vishal & Singh, Bhim, 2017. "Optimization of thermoelectric cooling technology for an active cooling of photovoltaic panel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1295-1305.
    12. Ding, L.C. & Akbarzadeh, A. & Date, Abhijit, 2016. "Electric power generation via plate type power generation unit from solar pond using thermoelectric cells," Applied Energy, Elsevier, vol. 183(C), pages 61-76.
    13. Liu, Di & Zhao, Fu-Yun & Yang, Hongxing & Tang, Guang-Fa, 2015. "Theoretical and experimental investigations of thermoelectric heating system with multiple ventilation channels," Applied Energy, Elsevier, vol. 159(C), pages 458-468.
    14. Ren, Xiao & Li, Jing & Hu, Mingke & Pei, Gang & Jiao, Dongsheng & Zhao, Xudong & Ji, Jie, 2019. "Feasibility of an innovative amorphous silicon photovoltaic/thermal system for medium temperature applications," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    15. Miao, Zhuang & Meng, Xiangning & Zhou, Sen & Zhu, Miaoyong, 2020. "Thermo-mechanical analysis on thermoelectric legs arrangement of thermoelectric modules," Renewable Energy, Elsevier, vol. 147(P1), pages 2272-2278.
    16. Hyland, Melissa & Hunter, Haywood & Liu, Jie & Veety, Elena & Vashaee, Daryoosh, 2016. "Wearable thermoelectric generators for human body heat harvesting," Applied Energy, Elsevier, vol. 182(C), pages 518-524.
    17. Ramakrishnan Iyer & Aritra Ghosh, 2023. "Investigation of Integrated and Non-Integrated Thermoelectric Systems for Buildings—A Review," Energies, MDPI, vol. 16(19), pages 1-17, October.
    18. Zhang, Jiangyun & Shao, Dan & Jiang, Liqin & Zhang, Guoqing & Wu, Hongwei & Day, Rodney & Jiang, Wenzhao, 2022. "Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    19. He, Zhi-Zhu, 2020. "A coupled electrical-thermal impedance matching model for design optimization of thermoelectric generator," Applied Energy, Elsevier, vol. 269(C).
    20. Jaeyoo Choi & Edmond W Zaia & Madeleine Gordon & Jeffrey J Urban, 2018. "Weaving a New World: Wearable Thermoelectric Textiles," Current Trends in Fashion Technology & Textile Engineering, Juniper Publishers Inc., vol. 2(2), pages 23-25, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40954-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.