IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51681-3.html
   My bibliography  Save this article

The Chlamydia pneumoniae effector SemD exploits its host’s endocytic machinery by structural and functional mimicry

Author

Listed:
  • Fabienne Kocher

    (Faculty of Mathematics and Natural Sciences, Institute for Functional Microbial Genomics)

  • Violetta Applegate

    (Center for Structural Studies)

  • Jens Reiners

    (Center for Structural Studies)

  • Astrid Port

    (Center for Structural Studies)

  • Dominik Spona

    (Faculty of Mathematics and Natural Sciences, Institute for Functional Microbial Genomics)

  • Sebastian Hänsch

    (Center for Advanced Imaging)

  • Amin Mirzaiebadizi

    (Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf)

  • Mohammad Reza Ahmadian

    (Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf)

  • Sander H. J. Smits

    (Center for Structural Studies
    Institute of Biochemistry)

  • Johannes H. Hegemann

    (Faculty of Mathematics and Natural Sciences, Institute for Functional Microbial Genomics)

  • Katja Mölleken

    (Faculty of Mathematics and Natural Sciences, Institute for Functional Microbial Genomics)

Abstract

To enter epithelial cells, the obligate intracellular pathogen Chlamydia pneumoniae secretes early effector proteins, which bind to and modulate the host-cell’s plasma membrane and recruit several pivotal endocytic host proteins. Here, we present the high-resolution structure of an entry-related chlamydial effector protein, SemD. Co-crystallisation of SemD with its host binding partners demonstrates that SemD co-opts the Cdc42 binding site to activate the actin cytoskeleton regulator N-WASP, making active, GTP-bound Cdc42 superfluous. While SemD binds N-WASP much more strongly than Cdc42 does, it does not bind the Cdc42 effector protein FMNL2, indicating effector protein specificity. Furthermore, by identifying flexible and structured domains, we show that SemD can simultaneously interact with the membrane, the endocytic protein SNX9, and N-WASP. Here, we show at the structural level how a single effector protein can hijack central components of the host’s endocytic system for efficient internalization.

Suggested Citation

  • Fabienne Kocher & Violetta Applegate & Jens Reiners & Astrid Port & Dominik Spona & Sebastian Hänsch & Amin Mirzaiebadizi & Mohammad Reza Ahmadian & Sander H. J. Smits & Johannes H. Hegemann & Katja M, 2024. "The Chlamydia pneumoniae effector SemD exploits its host’s endocytic machinery by structural and functional mimicry," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51681-3
    DOI: 10.1038/s41467-024-51681-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51681-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51681-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jan N. Galle & Tim Fechtner & Thorsten Eierhoff & Winfried Römer & Johannes H. Hegemann, 2019. "A Chlamydia pneumoniae adhesin induces phosphatidylserine exposure on host cells," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Norzehan Abdul-Manan & Behzad Aghazadeh & Grace A. Liu & Ananya Majumdar & Ouathek Ouerfelli & Katherine A. Siminovitch & Michael K. Rosen, 1999. "Structure of Cdc42 in complex with the GTPase-binding domain of the ‘Wiskott–Aldrich syndrome’ protein," Nature, Nature, vol. 399(6734), pages 379-383, May.
    3. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    4. Yixin Fu & Jorge E. Galán, 1999. "A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion," Nature, Nature, vol. 401(6750), pages 293-297, September.
    5. Annette S. Kim & Lazaros T. Kakalis & Norzehan Abdul-Manan & Grace A. Liu & Michael K. Rosen, 2000. "Autoinhibition and activation mechanisms of the Wiskott–Aldrich syndrome protein," Nature, Nature, vol. 404(6774), pages 151-158, March.
    6. David L Hahn, 2021. "Chlamydia pneumoniae and chronic asthma: Updated systematic review and meta-analysis of population attributable risk," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-21, April.
    7. Sonja Kühn & Constanze Erdmann & Frieda Kage & Jennifer Block & Lisa Schwenkmezger & Anika Steffen & Klemens Rottner & Matthias Geyer, 2015. "The structure of FMNL2–Cdc42 yields insights into the mechanism of lamellipodia and filopodia formation," Nature Communications, Nature, vol. 6(1), pages 1-14, November.
    8. Nathan A. Sallee & Gonzalo M. Rivera & John E. Dueber & Dan Vasilescu & R. Dyche Mullins & Bruce J. Mayer & Wendell A. Lim, 2008. "The pathogen protein EspFU hijacks actin polymerization using mimicry and multivalency," Nature, Nature, vol. 454(7207), pages 1005-1008, August.
    9. Gudula Schmidt & Peter Sehr & Matthias Wilm & Jörg Selzer & Matthias Mann & Klaus Aktories, 1997. "Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1," Nature, Nature, vol. 387(6634), pages 725-729, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Norbert S. Hill & Matthew D. Welch, 2022. "A glycine-rich PE_PGRS protein governs mycobacterial actin-based motility," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative AI," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, National Bureau of Economic Research, Inc.
    3. Anthony C. Bishop & Glorisé Torres-Montalvo & Sravya Kotaru & Kyle Mimun & A. Joshua Wand, 2023. "Robust automated backbone triple resonance NMR assignments of proteins using Bayesian-based simulated annealing," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Deyun Qiu & Jinxin V. Pei & James E. O. Rosling & Vandana Thathy & Dongdi Li & Yi Xue & John D. Tanner & Jocelyn Sietsma Penington & Yi Tong Vincent Aw & Jessica Yi Han Aw & Guoyue Xu & Abhai K. Tripa, 2022. "A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Dick Schijven & Sourena Soheili-Nezhad & Simon E. Fisher & Clyde Francks, 2024. "Exome-wide analysis implicates rare protein-altering variants in human handedness," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Xiaoke Yang & Mingqi Zhu & Xue Lu & Yuxin Wang & Junyu Xiao, 2024. "Architecture and activation of human muscle phosphorylase kinase," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Zheng Shen & Daxiao Sun & Adriana Savastano & Sára Joana Varga & Maria-Sol Cima-Omori & Stefan Becker & Alf Honigmann & Markus Zweckstetter, 2023. "Multivalent Tau/PSD-95 interactions arrest in vitro condensates and clusters mimicking the postsynaptic density," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Evangelos Katsamakas & Oleg V. Pavlov & Ryan Saklad, 2024. "Artificial intelligence and the transformation of higher education institutions," Papers 2402.08143, arXiv.org.
    10. Efren Garcia-Maldonado & Andrew D. Huber & Sergio C. Chai & Stanley Nithianantham & Yongtao Li & Jing Wu & Shyaron Poudel & Darcie J. Miller & Jayaraman Seetharaman & Taosheng Chen, 2024. "Chemical manipulation of an activation/inhibition switch in the nuclear receptor PXR," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Kristy Rochon & Brianna L. Bauer & Nathaniel A. Roethler & Yuli Buckley & Chih-Chia Su & Wei Huang & Rajesh Ramachandran & Maria S. K. Stoll & Edward W. Yu & Derek J. Taylor & Jason A. Mears, 2024. "Structural basis for regulated assembly of the mitochondrial fission GTPase Drp1," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Katherine A. Ray & Joshua D. Lutgens & Ramesh Bista & Jie Zhang & Ronak R. Desai & Melissa Hirsch & Takeshi Miyazawa & Antonio Cordova & Adrian T. Keatinge-Clay, 2024. "Assessing and harnessing updated polyketide synthase modules through combinatorial engineering," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Fan Lu & Liang Zhu & Thomas Bromberger & Jun Yang & Qiannan Yang & Jianmin Liu & Edward F. Plow & Markus Moser & Jun Qin, 2022. "Mechanism of integrin activation by talin and its cooperation with kindlin," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    14. Zengyu Shao & Jiuwei Lu & Nelli Khudaverdyan & Jikui Song, 2024. "Multi-layered heterochromatin interaction as a switch for DIM2-mediated DNA methylation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    15. Yudong Gao & Daichi Shonai & Matthew Trn & Jieqing Zhao & Erik J. Soderblom & S. Alexandra Garcia-Moreno & Charles A. Gersbach & William C. Wetsel & Geraldine Dawson & Dmitry Velmeshev & Yong-hui Jian, 2024. "Proximity analysis of native proteomes reveals phenotypic modifiers in a mouse model of autism and related neurodevelopmental conditions," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    16. Martin F. Peter & Christian Gebhardt & Rebecca Mächtel & Gabriel G. Moya Muñoz & Janin Glaenzer & Alessandra Narducci & Gavin H. Thomas & Thorben Cordes & Gregor Hagelueken, 2022. "Cross-validation of distance measurements in proteins by PELDOR/DEER and single-molecule FRET," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    17. Lauren L. Porter & Allen K. Kim & Swechha Rimal & Loren L. Looger & Ananya Majumdar & Brett D. Mensh & Mary R. Starich & Marie-Paule Strub, 2022. "Many dissimilar NusG protein domains switch between α-helix and β-sheet folds," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Jutta Diessl & Jens Berndtsson & Filomena Broeskamp & Lukas Habernig & Verena Kohler & Carmela Vazquez-Calvo & Arpita Nandy & Carlotta Peselj & Sofia Drobysheva & Ludovic Pelosi & F.-Nora Vögtle & Fab, 2022. "Manganese-driven CoQ deficiency," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    19. Alexander Kroll & Sahasra Ranjan & Martin K. M. Engqvist & Martin J. Lercher, 2023. "A general model to predict small molecule substrates of enzymes based on machine and deep learning," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Lisa-Marie Appel & Vedran Franke & Johannes Benedum & Irina Grishkovskaya & Xué Strobl & Anton Polyansky & Gregor Ammann & Sebastian Platzer & Andrea Neudolt & Anna Wunder & Lena Walch & Stefanie Kais, 2023. "The SPOC domain is a phosphoserine binding module that bridges transcription machinery with co- and post-transcriptional regulators," Nature Communications, Nature, vol. 14(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51681-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.