IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms10956.html
   My bibliography  Save this article

A metallic mosaic phase and the origin of Mott-insulating state in 1T-TaS2

Author

Listed:
  • Liguo Ma

    (Fudan University
    Collaborative Innovation Center of Advanced Microstructures)

  • Cun Ye

    (Fudan University
    Collaborative Innovation Center of Advanced Microstructures)

  • Yijun Yu

    (Fudan University
    Collaborative Innovation Center of Advanced Microstructures)

  • Xiu Fang Lu

    (Collaborative Innovation Center of Advanced Microstructures
    University of Science and Technology of China
    Key Laboratory of Strongly Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Science and Technology of China)

  • Xiaohai Niu

    (Fudan University
    Collaborative Innovation Center of Advanced Microstructures)

  • Sejoong Kim

    (Korea Institute for Advanced Study)

  • Donglai Feng

    (Fudan University
    Collaborative Innovation Center of Advanced Microstructures)

  • David Tománek

    (Michigan State University)

  • Young-Woo Son

    (Korea Institute for Advanced Study)

  • Xian Hui Chen

    (Collaborative Innovation Center of Advanced Microstructures
    University of Science and Technology of China
    Key Laboratory of Strongly Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Science and Technology of China)

  • Yuanbo Zhang

    (Fudan University
    Collaborative Innovation Center of Advanced Microstructures)

Abstract

Electron–electron and electron–phonon interactions are two major driving forces that stabilize various charge-ordered phases of matter. In layered compound 1T-TaS2, the intricate interplay between the two generates a Mott-insulating ground state with a peculiar charge-density-wave (CDW) order. The delicate balance also makes it possible to use external perturbations to create and manipulate novel phases in this material. Here, we study a mosaic CDW phase induced by voltage pulses, and find that the new phase exhibits electronic structures entirely different from that of the original Mott ground state. The mosaic phase consists of nanometre-sized domains characterized by well-defined phase shifts of the CDW order parameter in the topmost layer, and by altered stacking relative to the layers underneath. We discover that the nature of the new phase is dictated by the stacking order, and our results shed fresh light on the origin of the Mott phase in 1T-TaS2.

Suggested Citation

  • Liguo Ma & Cun Ye & Yijun Yu & Xiu Fang Lu & Xiaohai Niu & Sejoong Kim & Donglai Feng & David Tománek & Young-Woo Son & Xian Hui Chen & Yuanbo Zhang, 2016. "A metallic mosaic phase and the origin of Mott-insulating state in 1T-TaS2," Nature Communications, Nature, vol. 7(1), pages 1-8, April.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10956
    DOI: 10.1038/ncomms10956
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms10956
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms10956?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaka Vodeb & Michele Diego & Yevhenii Vaskivskyi & Leonard Logaric & Yaroslav Gerasimenko & Viktor Kabanov & Benjamin Lipovsek & Marko Topic & Dragan Mihailovic, 2024. "Non-equilibrium quantum domain reconfiguration dynamics in a two-dimensional electronic crystal and a quantum annealer," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Yihao Wang & Zhihao Li & Xuan Luo & Jingjing Gao & Yuyan Han & Jialiang Jiang & Jin Tang & Huanxin Ju & Tongrui Li & Run Lv & Shengtao Cui & Yingguo Yang & Yuping Sun & Junfa Zhu & Xingyu Gao & Wenjia, 2024. "Dualistic insulator states in 1T-TaS2 crystals," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Anze Mraz & Michele Diego & Andrej Kranjec & Jaka Vodeb & Peter Karpov & Yaroslav Gerasimenko & Jan Ravnik & Yevhenii Vaskivskyi & Rok Venturini & Viktor Kabanov & Benjamin Lipovšek & Marko Topič & Ig, 2023. "Manipulation of fractionalized charge in the metastable topologically entangled state of a doped Wigner crystal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. E. S. Bozin & M. Abeykoon & S. Conradson & G. Baldinozzi & P. Sutar & D. Mihailovic, 2023. "Crystallization of polarons through charge and spin ordering transitions in 1T-TaS2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Yu-Ting Huang & Zhen-Ze Li & Nian-Ke Chen & Yeliang Wang & Hong-Bo Sun & Shengbai Zhang & Xian-Bin Li, 2024. "Complex charge density waves in simple electronic systems of two-dimensional III2–VI3 materials," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Nikhil Tilak & Michael Altvater & Sheng-Hsiung Hung & Choong-Jae Won & Guohong Li & Taha Kaleem & Sang-Wook Cheong & Chung-Hou Chung & Horng-Tay Jeng & Eva Y. Andrei, 2024. "Proximity induced charge density wave in a graphene/1T-TaS2 heterostructure," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Sung-Hoon Lee & Doohee Cho, 2023. "Charge density wave surface reconstruction in a van der Waals layered material," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.