IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51354-1.html
   My bibliography  Save this article

A class I PI3K signalling network regulates primary cilia disassembly in normal physiology and disease

Author

Listed:
  • Sarah E. Conduit

    (University College London)

  • Wayne Pearce

    (University College London)

  • Amandeep Bhamra

    (University College London)

  • Benoit Bilanges

    (University College London)

  • Laura Bozal-Basterra

    (Building 801A
    Centro de Investigación Biomédica En Red de Cáncer (CIBERONC))

  • Lazaros C. Foukas

    (University College London)

  • Mathias Cobbaut

    (1 Midland Road)

  • Sandra D. Castillo

    (Josep Carreras Leukaemia Research Institute)

  • Mohammad Amin Danesh

    (University College London)

  • Mahreen Adil

    (University College London)

  • Arkaitz Carracedo

    (Building 801A
    Centro de Investigación Biomédica En Red de Cáncer (CIBERONC)
    Biocruces Bizkaia Health Research Institute
    Basque Foundation for Science)

  • Mariona Graupera

    (Centro de Investigación Biomédica En Red de Cáncer (CIBERONC)
    Josep Carreras Leukaemia Research Institute
    Pg. Lluís Companys 23)

  • Neil Q. McDonald

    (1 Midland Road
    Birkbeck College)

  • Peter J. Parker

    (The Francis Crick Institute
    Guy’s Campus)

  • Pedro R. Cutillas

    (Queen Mary University of London)

  • Silvia Surinova

    (University College London)

  • Bart Vanhaesebroeck

    (University College London)

Abstract

Primary cilia are antenna-like organelles which sense extracellular cues and act as signalling hubs. Cilia dysfunction causes a heterogeneous group of disorders known as ciliopathy syndromes affecting most organs. Cilia disassembly, the process by which cells lose their cilium, is poorly understood but frequently observed in disease and upon cell transformation. Here, we uncover a role for the PI3Kα signalling enzyme in cilia disassembly. Genetic PI3Kα-hyperactivation, as observed in PIK3CA-related overgrowth spectrum (PROS) and cancer, induced a ciliopathy-like phenotype during mouse development. Mechanistically, PI3Kα and PI3Kβ produce the PIP3 lipid at the cilia transition zone upon disassembly stimulation. PI3Kα activation initiates cilia disassembly through a kinase signalling axis via the PDK1/PKCι kinases, the CEP170 centrosomal protein and the KIF2A microtubule-depolymerising kinesin. Our data suggest diseases caused by PI3Kα-activation may be considered ‘Disorders with Ciliary Contributions’, a recently-defined subset of ciliopathies in which some, but not all, of the clinical manifestations result from cilia dysfunction.

Suggested Citation

  • Sarah E. Conduit & Wayne Pearce & Amandeep Bhamra & Benoit Bilanges & Laura Bozal-Basterra & Lazaros C. Foukas & Mathias Cobbaut & Sandra D. Castillo & Mohammad Amin Danesh & Mahreen Adil & Arkaitz Ca, 2024. "A class I PI3K signalling network regulates primary cilia disassembly in normal physiology and disease," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51354-1
    DOI: 10.1038/s41467-024-51354-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51354-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51354-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Scott X. Atwood & Mischa Li & Alex Lee & Jean Y. Tang & Anthony E. Oro, 2013. "GLI activation by atypical protein kinase C ι/λ regulates the growth of basal cell carcinomas," Nature, Nature, vol. 494(7438), pages 484-488, February.
    2. Francesca Sacco & Sean J. Humphrey & Jürgen Cox & Marcel Mischnik & Anke Schulte & Thomas Klabunde & Matthias Schäfer & Matthias Mann, 2016. "Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion," Nature Communications, Nature, vol. 7(1), pages 1-13, December.
    3. Philipp Mertins & D. R. Mani & Kelly V. Ruggles & Michael A. Gillette & Karl R. Clauser & Pei Wang & Xianlong Wang & Jana W. Qiao & Song Cao & Francesca Petralia & Emily Kawaler & Filip Mundt & Karste, 2016. "Proteogenomics connects somatic mutations to signalling in breast cancer," Nature, Nature, vol. 534(7605), pages 55-62, June.
    4. Aleksandra Levina & Kaelin D. Fleming & John E. Burke & Thomas A. Leonard, 2022. "Activation of the essential kinase PDK1 by phosphoinositide-driven trans-autophosphorylation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Huai-Bin Hu & Zeng-Qing Song & Guang-Ping Song & Sen Li & Hai-Qing Tu & Min Wu & Yu-Cheng Zhang & Jin-Feng Yuan & Ting-Ting Li & Pei-Yao Li & Yu-Ling Xu & Xiao-Lin Shen & Qiu-Ying Han & Ai-Ling Li & T, 2021. "LPA signaling acts as a cell-extrinsic mechanism to initiate cilia disassembly and promote neurogenesis," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    6. Sehyun Kim & Kwanwoo Lee & Jung-Hwan Choi & Niels Ringstad & Brian David Dynlacht, 2015. "Nek2 activation of Kif24 ensures cilium disassembly during the cell cycle," Nature Communications, Nature, vol. 6(1), pages 1-13, November.
    7. Wei Zhang & Si-Lu Yang & Mei Yang & Stephanie Herrlinger & Qiang Shao & John L. Collar & Edgar Fierro & Yanhong Shi & Aimin Liu & Hui Lu & Bruce E. Herring & Ming-Lei Guo & Shilpa Buch & Zhen Zhao & J, 2019. "Modeling microcephaly with cerebral organoids reveals a WDR62–CEP170–KIF2A pathway promoting cilium disassembly in neural progenitors," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    8. Zaiming Tang & Mary Grace Lin & Timothy Richard Stowe & She Chen & Muyuan Zhu & Tim Stearns & Brunella Franco & Qing Zhong, 2013. "Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites," Nature, Nature, vol. 502(7470), pages 254-257, October.
    9. Shidong Jia & Zhenning Liu & Sen Zhang & Pixu Liu & Lei Zhang & Sang Hyun Lee & Jing Zhang & Sabina Signoretti & Massimo Loda & Thomas M. Roberts & Jean J. Zhao, 2008. "Essential roles of PI(3)K–p110β in cell growth, metabolism and tumorigenesis," Nature, Nature, vol. 454(7205), pages 776-779, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muqing Cao & Xiaoxiao Zou & Chaoyi Li & Zaisheng Lin & Ni Wang & Zhongju Zou & Youqiong Ye & Joachim Seemann & Beth Levine & Zaiming Tang & Qing Zhong, 2023. "An actin filament branching surveillance system regulates cell cycle progression, cytokinesis and primary ciliogenesis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Aurore Claude-Taupin & Pierre Isnard & Alessia Bagattin & Nicolas Kuperwasser & Federica Roccio & Biagina Ruscica & Nicolas Goudin & Meriem Garfa-Traoré & Alice Regnier & Lisa Turinsky & Martine Burti, 2023. "The AMPK-Sirtuin 1-YAP axis is regulated by fluid flow intensity and controls autophagy flux in kidney epithelial cells," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    3. Jinsen Zhang & Rui Sun & Yingying Lyu & Chaxian Liu & Ying Liu & Yuan Feng & Minjie Fu & Peter Jih Cheng Wong & Zunguo Du & Tianming Qiu & Yi Zhang & Dongxiao Zhuang & Zhiyong Qin & Yu Yao & Wei Zhu &, 2024. "Proteomic profiling of gliomas unveils immune and metabolism-driven subtypes with implications for anti-nucleotide metabolism therapy," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Katrin Stuber & Tobias Schneider & Jill Werner & Michael Kovermann & Andreas Marx & Martin Scheffner, 2021. "Structural and functional consequences of NEDD8 phosphorylation," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    5. Chengxin Dai & Anja Füllgrabe & Julianus Pfeuffer & Elizaveta M. Solovyeva & Jingwen Deng & Pablo Moreno & Selvakumar Kamatchinathan & Deepti Jaiswal Kundu & Nancy George & Silvie Fexova & Björn Grüni, 2021. "A proteomics sample metadata representation for multiomics integration and big data analysis," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. S. Mouron & M. J. Bueno & A. Lluch & L. Manso & I. Calvo & J. Cortes & J. A. Garcia-Saenz & M. Gil-Gil & N. Martinez-Janez & J. V. Apala & E. Caleiras & Pilar Ximénez-Embún & J. Muñoz & L. Gonzalez-Co, 2022. "Phosphoproteomic analysis of neoadjuvant breast cancer suggests that increased sensitivity to paclitaxel is driven by CDK4 and filamin A," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    7. Jonathan J. Swietlik & Stefanie Bärthel & Chiara Falcomatà & Diana Fink & Ankit Sinha & Jingyuan Cheng & Stefan Ebner & Peter Landgraf & Daniela C. Dieterich & Henrik Daub & Dieter Saur & Felix Meissn, 2023. "Cell-selective proteomics segregates pancreatic cancer subtypes by extracellular proteins in tumors and circulation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Jennifer G. Abelin & Erik J. Bergstrom & Keith D. Rivera & Hannah B. Taylor & Susan Klaeger & Charles Xu & Eva K. Verzani & C. Jackson White & Hilina B. Woldemichael & Maya Virshup & Meagan E. Olive &, 2023. "Workflow enabling deepscale immunopeptidome, proteome, ubiquitylome, phosphoproteome, and acetylome analyses of sample-limited tissues," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    9. Yiqun Zhang & Fengju Chen & Darshan S. Chandrashekar & Sooryanarayana Varambally & Chad J. Creighton, 2022. "Proteogenomic characterization of 2002 human cancers reveals pan-cancer molecular subtypes and associated pathways," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    10. Brian D. Lehmann & Antonio Colaprico & Tiago C. Silva & Jianjiao Chen & Hanbing An & Yuguang Ban & Hanchen Huang & Lily Wang & Jamaal L. James & Justin M. Balko & Paula I. Gonzalez-Ericsson & Melinda , 2021. "Multi-omics analysis identifies therapeutic vulnerabilities in triple-negative breast cancer subtypes," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    11. Yuen Lam Dora Ng & Evelyn Ramberger & Stephan R. Bohl & Anna Dolnik & Christian Steinebach & Theresia Conrad & Sina Müller & Oliver Popp & Miriam Kull & Mohamed Haji & Michael Gütschow & Hartmut Döhne, 2022. "Proteomic profiling reveals CDK6 upregulation as a targetable resistance mechanism for lenalidomide in multiple myeloma," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Shizhong Ke & Fabin Dang & Lin Wang & Jia-Yun Chen & Mandar T. Naik & Wenxue Li & Abhishek Thavamani & Nami Kim & Nandita M. Naik & Huaxiu Sui & Wei Tang & Chenxi Qiu & Kazuhiro Koikawa & Felipe Batal, 2024. "Reciprocal antagonism of PIN1-APC/CCDH1 governs mitotic protein stability and cell cycle entry," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    13. Konxhe Kulaj & Alexandra Harger & Michaela Bauer & Özüm S. Caliskan & Tilak Kumar Gupta & Dapi Menglin Chiang & Edward Milbank & Josefine Reber & Angelos Karlas & Petra Kotzbeck & David N. Sailer & Fr, 2023. "Adipocyte-derived extracellular vesicles increase insulin secretion through transport of insulinotropic protein cargo," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Pasquale Simeone & Stefano Tacconi & Serena Longo & Paola Lanuti & Sara Bravaccini & Francesca Pirini & Sara Ravaioli & Luciana Dini & Anna M. Giudetti, 2021. "Expanding Roles of De Novo Lipogenesis in Breast Cancer," IJERPH, MDPI, vol. 18(7), pages 1-16, March.
    15. Jing Yu & Xiuqi Gui & Yunhao Zou & Qian Liu & Zhicheng Yang & Jusheng An & Xuan Guo & Kaihua Wang & Jiaming Guo & Manni Huang & Shuhan Zhou & Jing Zuo & Yimin Chen & Lu Deng & Guangwen Yuan & Ning Li , 2024. "A proteogenomic analysis of cervical cancer reveals therapeutic and biological insights," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    16. Karama Asleh & Gian Luca Negri & Sandra E. Spencer Miko & Shane Colborne & Christopher S. Hughes & Xiu Q. Wang & Dongxia Gao & C. Blake Gilks & Stephen K. L. Chia & Torsten O. Nielsen & Gregg B. Morin, 2022. "Proteomic analysis of archival breast cancer clinical specimens identifies biological subtypes with distinct survival outcomes," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    17. Ling Li & Mingming Niu & Alyssa Erickson & Jie Luo & Kincaid Rowbotham & Kai Guo & He Huang & Yuxin Li & Yi Jiang & Junguk Hur & Chunyu Liu & Junmin Peng & Xusheng Wang, 2022. "SMAP is a pipeline for sample matching in proteogenomics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Lingling Li & Dongxian Jiang & Hui Liu & Chunmei Guo & Rui Zhao & Qiao Zhang & Chen Xu & Zhaoyu Qin & Jinwen Feng & Yang Liu & Haixing Wang & Weijie Chen & Xue Zhang & Bin Li & Lin Bai & Sha Tian & Su, 2023. "Comprehensive proteogenomic characterization of early duodenal cancer reveals the carcinogenesis tracks of different subtypes," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    19. Sam Crowl & Ben T. Jordan & Hamza Ahmed & Cynthia X. Ma & Kristen M. Naegle, 2022. "KSTAR: An algorithm to predict patient-specific kinase activities from phosphoproteomic data," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    20. Brijesh Kumar & Aditi S. Khatpe & Jiang Guanglong & Katie Batic & Poornima Bhat-Nakshatri & Maggie M. Granatir & Rebekah Joann Addison & Megan Szymanski & Lee Ann Baldridge & Constance J. Temm & Georg, 2023. "Stromal heterogeneity may explain increased incidence of metaplastic breast cancer in women of African descent," Nature Communications, Nature, vol. 14(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51354-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.