IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41374-8.html
   My bibliography  Save this article

Global impact of somatic structural variation on the cancer proteome

Author

Listed:
  • Fengju Chen

    (Baylor College of Medicine)

  • Yiqun Zhang

    (Baylor College of Medicine)

  • Darshan S. Chandrashekar

    (University of Alabama at Birmingham
    University of Alabama at Birmingham
    University of Alabama at Birmingham)

  • Sooryanarayana Varambally

    (University of Alabama at Birmingham
    University of Alabama at Birmingham
    University of Alabama at Birmingham)

  • Chad J. Creighton

    (Baylor College of Medicine
    Baylor College of Medicine
    Baylor College of Medicine)

Abstract

Both proteome and transcriptome data can help assess the relevance of non-coding somatic mutations in cancer. Here, we combine mass spectrometry-based proteomics data with whole genome sequencing data across 1307 human tumors spanning various tissues to determine the extent somatic structural variant (SV) breakpoint patterns impact protein expression of nearby genes. We find that about 25% of the hundreds of genes with SV-associated cis-regulatory alterations at the mRNA level are similarly associated at the protein level. SVs associated with enhancer hijacking, retrotransposon translocation, altered DNA methylation, or fusion transcripts are implicated in protein over-expression. SVs combined with altered protein levels considerably extend the numbers of patients with tumors somatically altered for critical pathways. We catalog both SV breakpoint patterns involving patient survival and genes with nearby SV breakpoints associated with increased cell dependency in cancer cell lines. Pan-cancer proteogenomics identifies targetable non-coding alterations, by virtue of the associated deregulated genes.

Suggested Citation

  • Fengju Chen & Yiqun Zhang & Darshan S. Chandrashekar & Sooryanarayana Varambally & Chad J. Creighton, 2023. "Global impact of somatic structural variation on the cancer proteome," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41374-8
    DOI: 10.1038/s41467-023-41374-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41374-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41374-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jesse R. Dixon & Siddarth Selvaraj & Feng Yue & Audrey Kim & Yan Li & Yin Shen & Ming Hu & Jun S. Liu & Bing Ren, 2012. "Topological domains in mammalian genomes identified by analysis of chromatin interactions," Nature, Nature, vol. 485(7398), pages 376-380, May.
    2. Rehan Akbani & Patrick Kwok Shing Ng & Henrica M. J. Werner & Maria Shahmoradgoli & Fan Zhang & Zhenlin Ju & Wenbin Liu & Ji-Yeon Yang & Kosuke Yoshihara & Jun Li & Shiyun Ling & Elena G. Seviour & Pr, 2014. "A pan-cancer proteomic perspective on The Cancer Genome Atlas," Nature Communications, Nature, vol. 5(1), pages 1-15, September.
    3. Yiqun Zhang & Fengju Chen & Lawrence A. Donehower & Michael E. Scheurer & Chad J. Creighton, 2021. "A pediatric brain tumor atlas of genes deregulated by somatic genomic rearrangement," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    4. Paul A. Northcott & Catherine Lee & Thomas Zichner & Adrian M. Stütz & Serap Erkek & Daisuke Kawauchi & David J. H. Shih & Volker Hovestadt & Marc Zapatka & Dominik Sturm & David T. W. Jones & Marcel , 2014. "Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma," Nature, Nature, vol. 511(7510), pages 428-434, July.
    5. Philipp Mertins & D. R. Mani & Kelly V. Ruggles & Michael A. Gillette & Karl R. Clauser & Pei Wang & Xianlong Wang & Jana W. Qiao & Song Cao & Francesca Petralia & Emily Kawaler & Filip Mundt & Karste, 2016. "Proteogenomics connects somatic mutations to signalling in breast cancer," Nature, Nature, vol. 534(7605), pages 55-62, June.
    6. Mahmoud Ghandi & Franklin W. Huang & Judit Jané-Valbuena & Gregory V. Kryukov & Christopher C. Lo & E. Robert McDonald & Jordi Barretina & Ellen T. Gelfand & Craig M. Bielski & Haoxin Li & Kevin Hu & , 2019. "Next-generation characterization of the Cancer Cell Line Encyclopedia," Nature, Nature, vol. 569(7757), pages 503-508, May.
    7. Fengju Chen & Darshan S. Chandrashekar & Sooryanarayana Varambally & Chad J. Creighton, 2019. "Pan-cancer molecular subtypes revealed by mass-spectrometry-based proteomic characterization of more than 500 human cancers," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    8. Yiqun Zhang & Fengju Chen & Darshan S. Chandrashekar & Sooryanarayana Varambally & Chad J. Creighton, 2022. "Proteogenomic characterization of 2002 human cancers reveals pan-cancer molecular subtypes and associated pathways," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    9. Serena Nik-Zainal & Helen Davies & Johan Staaf & Manasa Ramakrishna & Dominik Glodzik & Xueqing Zou & Inigo Martincorena & Ludmil B. Alexandrov & Sancha Martin & David C. Wedge & Peter Van Loo & Young, 2016. "Landscape of somatic mutations in 560 breast cancer whole-genome sequences," Nature, Nature, vol. 534(7605), pages 47-54, June.
    10. Michael Fraser & Veronica Y. Sabelnykova & Takafumi N. Yamaguchi & Lawrence E. Heisler & Julie Livingstone & Vincent Huang & Yu-Jia Shiah & Fouad Yousif & Xihui Lin & Andre P. Masella & Natalie S. Fox, 2017. "Genomic hallmarks of localized, non-indolent prostate cancer," Nature, Nature, vol. 541(7637), pages 359-364, January.
    11. Bing Zhang & Jing Wang & Xiaojing Wang & Jing Zhu & Qi Liu & Zhiao Shi & Matthew C. Chambers & Lisa J. Zimmerman & Kent F. Shaddox & Sangtae Kim & Sherri R. Davies & Sean Wang & Pei Wang & Christopher, 2014. "Proteogenomic characterization of human colon and rectal cancer," Nature, Nature, vol. 513(7518), pages 382-387, September.
    12. Yiqun Zhang & Fengju Chen & Nuno A. Fonseca & Yao He & Masashi Fujita & Hidewaki Nakagawa & Zemin Zhang & Alvis Brazma & Chad J. Creighton, 2020. "High-coverage whole-genome analysis of 1220 cancers reveals hundreds of genes deregulated by rearrangement-mediated cis-regulatory alterations," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    13. Fengju Chen & Yiqun Zhang & Dominick Bossé & Aly-Khan A. Lalani & A. Ari Hakimi & James J. Hsieh & Toni K. Choueiri & Don L. Gibbons & Michael Ittmann & Chad J. Creighton, 2017. "Pan-urologic cancer genomic subtypes that transcend tissue of origin," Nature Communications, Nature, vol. 8(1), pages 1-15, December.
    14. Moritz Gerstung & Clemency Jolly & Ignaty Leshchiner & Stefan C. Dentro & Santiago Gonzalez & Daniel Rosebrock & Thomas J. Mitchell & Yulia Rubanova & Pavana Anur & Kaixian Yu & Maxime Tarabichi & Ami, 2020. "The evolutionary history of 2,658 cancers," Nature, Nature, vol. 578(7793), pages 122-128, February.
    15. Esther Rheinbay & Morten Muhlig Nielsen & Federico Abascal & Jeremiah A. Wala & Ofer Shapira & Grace Tiao & Henrik Hornshøj & Julian M. Hess & Randi Istrup Juul & Ziao Lin & Lars Feuerbach & Radhakris, 2020. "Analyses of non-coding somatic drivers in 2,658 cancer whole genomes," Nature, Nature, vol. 578(7793), pages 102-111, February.
    16. Jamunarani Veeraraghavan & Ying Tan & Xi-Xi Cao & Jin Ah Kim & Xian Wang & Gary C Chamness & Sourindra N Maiti & Laurence J N Cooper & Dean P Edwards & Alejandro Contreras & Susan G Hilsenbeck & Eric , 2014. "Recurrent ESR1–CCDC170 rearrangements in an aggressive subset of oestrogen receptor-positive breast cancers," Nature Communications, Nature, vol. 5(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fengju Chen & Yiqun Zhang & Lanlan Shen & Chad J. Creighton, 2024. "The DNA methylome of pediatric brain tumors appears shaped by structural variation and predicts survival," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiqun Zhang & Fengju Chen & Darshan S. Chandrashekar & Sooryanarayana Varambally & Chad J. Creighton, 2022. "Proteogenomic characterization of 2002 human cancers reveals pan-cancer molecular subtypes and associated pathways," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    2. Alexander Martinez-Fundichely & Austin Dixon & Ekta Khurana, 2022. "Modeling tissue-specific breakpoint proximity of structural variations from whole-genomes to identify cancer drivers," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Fengju Chen & Yiqun Zhang & Lanlan Shen & Chad J. Creighton, 2024. "The DNA methylome of pediatric brain tumors appears shaped by structural variation and predicts survival," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. S. Mouron & M. J. Bueno & A. Lluch & L. Manso & I. Calvo & J. Cortes & J. A. Garcia-Saenz & M. Gil-Gil & N. Martinez-Janez & J. V. Apala & E. Caleiras & Pilar Ximénez-Embún & J. Muñoz & L. Gonzalez-Co, 2022. "Phosphoproteomic analysis of neoadjuvant breast cancer suggests that increased sensitivity to paclitaxel is driven by CDK4 and filamin A," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Richard Culliford & Samuel E. D. Lawrence & Charlie Mills & Zayd Tippu & Daniel Chubb & Alex J. Cornish & Lisa Browning & Ben Kinnersley & Robert Bentham & Amit Sud & Husayn Pallikonda & Anna Frangou , 2024. "Whole genome sequencing refines stratification and therapy of patients with clear cell renal cell carcinoma," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Katelyn L. Mortenson & Courtney Dawes & Emily R. Wilson & Nathan E. Patchen & Hailey E. Johnson & Jason Gertz & Swneke D. Bailey & Yang Liu & Katherine E. Varley & Xiaoyang Zhang, 2024. "3D genomic analysis reveals novel enhancer-hijacking caused by complex structural alterations that drive oncogene overexpression," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Isabelle Rose Leo & Luay Aswad & Matthias Stahl & Elena Kunold & Frederik Post & Tom Erkers & Nona Struyf & Georgios Mermelekas & Rubin Narayan Joshi & Eva Gracia-Villacampa & Päivi Östling & Olli P. , 2022. "Integrative multi-omics and drug response profiling of childhood acute lymphoblastic leukemia cell lines," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    8. Jinsen Zhang & Rui Sun & Yingying Lyu & Chaxian Liu & Ying Liu & Yuan Feng & Minjie Fu & Peter Jih Cheng Wong & Zunguo Du & Tianming Qiu & Yi Zhang & Dongxiao Zhuang & Zhiyong Qin & Yu Yao & Wei Zhu &, 2024. "Proteomic profiling of gliomas unveils immune and metabolism-driven subtypes with implications for anti-nucleotide metabolism therapy," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Josefine Radke & Naveed Ishaque & Randi Koll & Zuguang Gu & Elisa Schumann & Lina Sieverling & Sebastian Uhrig & Daniel Hübschmann & Umut H. Toprak & Cristina López & Xavier Pastor Hostench & Simone B, 2022. "The genomic and transcriptional landscape of primary central nervous system lymphoma," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    10. Yanli Liu & Zhong Wu & Jin Zhou & Dinesh K. A. Ramadurai & Katelyn L. Mortenson & Estrella Aguilera-Jimenez & Yifei Yan & Xiaojun Yang & Alison M. Taylor & Katherine E. Varley & Jason Gertz & Peter S., 2021. "A predominant enhancer co-amplified with the SOX2 oncogene is necessary and sufficient for its expression in squamous cancer," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    11. Roberta Esposito & Andrés Lanzós & Tina Uroda & Sunandini Ramnarayanan & Isabel Büchi & Taisia Polidori & Hugo Guillen-Ramirez & Ante Mihaljevic & Bernard Mefi Merlin & Lia Mela & Eugenio Zoni & Lusin, 2023. "Tumour mutations in long noncoding RNAs enhance cell fitness," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    12. Theodore Sakellaropoulos & Catherine Do & Guimei Jiang & Giulia Cova & Peter Meyn & Dacia Dimartino & Sitharam Ramaswami & Adriana Heguy & Aristotelis Tsirigos & Jane A. Skok, 2024. "MethNet: a robust approach to identify regulatory hubs and their distal targets from cancer data," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Zhuoran Xu & Quan Li & Luigi Marchionni & Kai Wang, 2023. "PhenoSV: interpretable phenotype-aware model for the prioritization of genes affected by structural variants," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    14. Sebastian Carrasco Pro & Heather Hook & David Bray & Daniel Berenzy & Devlin Moyer & Meimei Yin & Adam Thomas Labadorf & Ryan Tewhey & Trevor Siggers & Juan Ignacio Fuxman Bass, 2023. "Widespread perturbation of ETS factor binding sites in cancer," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    15. Zhe Jiang & YoungJun Ju & Amjad Ali & Philip E. D. Chung & Patryk Skowron & Dong-Yu Wang & Mariusz Shrestha & Huiqin Li & Jeff C. Liu & Ioulia Vorobieva & Ronak Ghanbari-Azarnier & Ethel Mwewa & Maria, 2023. "Distinct shared and compartment-enriched oncogenic networks drive primary versus metastatic breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    16. Ling Li & Mingming Niu & Alyssa Erickson & Jie Luo & Kincaid Rowbotham & Kai Guo & He Huang & Yuxin Li & Yi Jiang & Junguk Hur & Chunyu Liu & Junmin Peng & Xusheng Wang, 2022. "SMAP is a pipeline for sample matching in proteogenomics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Naser Ansari-Pour & Yonglan Zheng & Toshio F. Yoshimatsu & Ayodele Sanni & Mustapha Ajani & Jean-Baptiste Reynier & Avraam Tapinos & Jason J. Pitt & Stefan Dentro & Anna Woodard & Padma Sheila Rajagop, 2021. "Whole-genome analysis of Nigerian patients with breast cancer reveals ethnic-driven somatic evolution and distinct genomic subtypes," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    18. Ziad Ibrahim & Tao Wang & Olivier Destaing & Nicola Salvi & Naghmeh Hoghoughi & Clovis Chabert & Alexandra Rusu & Jinjun Gao & Leonardo Feletto & Nicolas Reynoird & Thomas Schalch & Yingming Zhao & Ma, 2022. "Structural insights into p300 regulation and acetylation-dependent genome organisation," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    19. Heather E. Machado & Nina F. Øbro & Nicholas Williams & Shengjiang Tan & Ahmed Z. Boukerrou & Megan Davies & Miriam Belmonte & Emily Mitchell & E. Joanna Baxter & Nicole Mende & Anna Clay & Philip Anc, 2023. "Convergent somatic evolution commences in utero in a germline ribosomopathy," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Masashi Fujita & Mei-Ju May Chen & Doris Rieko Siwak & Shota Sasagawa & Ayako Oosawa-Tatsuguchi & Koji Arihiro & Atsushi Ono & Ryoichi Miura & Kazuhiro Maejima & Hiroshi Aikata & Masaki Ueno & Shinya , 2022. "Proteo-genomic characterization of virus-associated liver cancers reveals potential subtypes and therapeutic targets," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41374-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.