IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51263-3.html
   My bibliography  Save this article

Probing coherent quantum thermodynamics using a trapped ion

Author

Listed:
  • O. Onishchenko

    (Universität Mainz)

  • G. Guarnieri

    (University of Pavia
    Freie Universität Berlin)

  • P. Rosillo-Rodes

    (Campus Universitat de les Illes Balears)

  • D. Pijn

    (Universität Mainz)

  • J. Hilder

    (Universität Mainz)

  • U. G. Poschinger

    (Universität Mainz)

  • M. Perarnau-Llobet

    (University of Geneva)

  • J. Eisert

    (Freie Universität Berlin)

  • F. Schmidt-Kaler

    (Universität Mainz)

Abstract

Quantum thermodynamics is aimed at grasping thermodynamic laws as they apply to thermal machines operating in the deep quantum regime, where coherence and entanglement are expected to matter. Despite substantial progress, however, it has remained difficult to develop thermal machines in which such quantum effects are observed to be of pivotal importance. In this work, we demonstrate the possibility to experimentally measure and benchmark a genuine quantum correction, induced by quantum friction, to the classical work fluctuation-dissipation relation. This is achieved by combining laser-induced coherent Hamiltonian rotations and energy measurements on a trapped ion. Our results demonstrate that recent developments in stochastic quantum thermodynamics can be used to benchmark and unambiguously distinguish genuine quantum coherent signatures generated along driving protocols, even in presence of experimental SPAM errors and, most importantly, beyond the regimes for which theoretical predictions are available (e.g., in slow driving).

Suggested Citation

  • O. Onishchenko & G. Guarnieri & P. Rosillo-Rodes & D. Pijn & J. Hilder & U. G. Poschinger & M. Perarnau-Llobet & J. Eisert & F. Schmidt-Kaler, 2024. "Probing coherent quantum thermodynamics using a trapped ion," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51263-3
    DOI: 10.1038/s41467-024-51263-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51263-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51263-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Frank Arute & Kunal Arya & Ryan Babbush & Dave Bacon & Joseph C. Bardin & Rami Barends & Rupak Biswas & Sergio Boixo & Fernando G. S. L. Brandao & David A. Buell & Brian Burkett & Yu Chen & Zijun Chen, 2019. "Quantum supremacy using a programmable superconducting processor," Nature, Nature, vol. 574(7779), pages 505-510, October.
    2. Quentin Bouton & Jens Nettersheim & Sabrina Burgardt & Daniel Adam & Eric Lutz & Artur Widera, 2021. "A quantum heat engine driven by atomic collisions," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    3. Gleb Maslennikov & Shiqian Ding & Roland Hablützel & Jaren Gan & Alexandre Roulet & Stefan Nimmrichter & Jibo Dai & Valerio Scarani & Dzmitry Matsukevich, 2019. "Quantum absorption refrigerator with trapped ions," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong Liu & Shang Liu & Hekang Li & Hao Li & Kaixuan Huang & Zhongcheng Xiang & Xiaohui Song & Kai Xu & Dongning Zheng & Heng Fan, 2023. "Observation of entanglement transition of pseudo-random mixed states," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Sofia Priazhkina & Samuel Palmer & Pablo Martín-Ramiro & Román Orús & Samuel Mugel & Vladimir Skavysh, 2024. "Digital Payments in Firm Networks: Theory of Adoption and Quantum Algorithm," Staff Working Papers 24-17, Bank of Canada.
    3. X. L. He & Yong Lu & D. Q. Bao & Hang Xue & W. B. Jiang & Z. Wang & A. F. Roudsari & Per Delsing & J. S. Tsai & Z. R. Lin, 2023. "Fast generation of Schrödinger cat states using a Kerr-tunable superconducting resonator," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Hu, Jie-Ru & Zhang, Zuo-Yuan & Liu, Jin-Ming, 2024. "Implementation of three-qubit Deutsch-Jozsa algorithm with pendular states of polar molecules by optimal control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    5. Huang, Fangyu & Tan, Xiaoqing & Huang, Rui & Xu, Qingshan, 2022. "Variational convolutional neural networks classifiers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    6. Jesús Fernández-Villaverde & Isaiah J. Hull, 2023. "Dynamic Programming on a Quantum Annealer: Solving the RBC Model," NBER Working Papers 31326, National Bureau of Economic Research, Inc.
    7. Maryam Moghimi & Herbert W. Corley, 2020. "Information Loss Due to the Data Reduction of Sample Data from Discrete Distributions," Data, MDPI, vol. 5(3), pages 1-18, September.
    8. Kumar, Ashutosh & Lahiri, Sourabh & Bagarti, Trilochan & Banerjee, Subhashish, 2023. "Thermodynamics of one and two-qubit nonequilibrium heat engines running between squeezed thermal reservoirs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    9. Abha Naik & Esra Yeniaras & Gerhard Hellstern & Grishma Prasad & Sanjay Kumar Lalta Prasad Vishwakarma, 2023. "From Portfolio Optimization to Quantum Blockchain and Security: A Systematic Review of Quantum Computing in Finance," Papers 2307.01155, arXiv.org.
    10. Xianchuang Pan & Yuxuan Zhou & Haolan Yuan & Lifu Nie & Weiwei Wei & Libo Zhang & Jian Li & Song Liu & Zhi Hao Jiang & Gianluigi Catelani & Ling Hu & Fei Yan & Dapeng Yu, 2022. "Engineering superconducting qubits to reduce quasiparticles and charge noise," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    11. Ducuara, Andrés F. & Susa, Cristian E. & Reina, John H., 2022. "Emergence of maximal hidden quantum correlations and its trade-off with the filtering probability in dissipative two-qubit systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    12. Nikolaos Schetakis & Davit Aghamalyan & Michael Boguslavsky & Agnieszka Rees & Marc Rakotomalala & Paul Robert Griffin, 2024. "Quantum Machine Learning for Credit Scoring," Mathematics, MDPI, vol. 12(9), pages 1-12, May.
    13. Jake Rochman & Tian Xie & John G. Bartholomew & K. C. Schwab & Andrei Faraon, 2023. "Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Reis, Mauricio & Oliveira, Adelcio C., 2022. "A complementary resource relation of concurrence and roughness for a two-qubit state," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).
    15. Jin Ming Koh & Tommy Tai & Ching Hua Lee, 2024. "Realization of higher-order topological lattices on a quantum computer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. T. Brown & E. Doucet & D. Ristè & G. Ribeill & K. Cicak & J. Aumentado & R. Simmonds & L. Govia & A. Kamal & L. Ranzani, 2022. "Trade off-free entanglement stabilization in a superconducting qutrit-qubit system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    17. Daniel Christian Lawo & Rana Abu Bakar & Abraham Cano Aguilera & Filippo Cugini & José Luis Imaña & Idelfonso Tafur Monroy & Juan Jose Vegas Olmos, 2024. "Wireless and Fiber-Based Post-Quantum-Cryptography-Secured IPsec Tunnel," Future Internet, MDPI, vol. 16(8), pages 1-22, August.
    18. Sarmah, Manash Jyoti & Goswami, Himangshu Prabal, 2023. "Learning coherences from nonequilibrium fluctuations in a quantum heat engine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 627(C).
    19. Yulin Chi & Jieshan Huang & Zhanchuan Zhang & Jun Mao & Zinan Zhou & Xiaojiong Chen & Chonghao Zhai & Jueming Bao & Tianxiang Dai & Huihong Yuan & Ming Zhang & Daoxin Dai & Bo Tang & Yan Yang & Zhihua, 2022. "A programmable qudit-based quantum processor," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Elies Gil-Fuster & Jens Eisert & Carlos Bravo-Prieto, 2024. "Understanding quantum machine learning also requires rethinking generalization," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51263-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.